Suppr超能文献

中文译文:线性回归与四种不同机器学习方法在中国女性年龄队列中筛选骨质疏松症风险因素的比较。

Comparison between linear regression and four different machine learning methods in selecting risk factors for osteoporosis in a Chinese female aged cohort.

机构信息

Teaching and Researching Center, Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan, ROC.

Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung, Taiwan, ROC.

出版信息

J Chin Med Assoc. 2023 Nov 1;86(11):1028-1036. doi: 10.1097/JCMA.0000000000000999. Epub 2023 Sep 19.

Abstract

BACKGROUND

Population aging is emerging as an increasingly acute challenge for countries around the world. One particular manifestation of this phenomenon is the impact of osteoporosis on individuals and national health systems. Previous studies of risk factors for osteoporosis were conducted using traditional statistical methods, but more recent efforts have turned to machine learning approaches. Most such efforts, however, treat the target variable (bone mineral density [BMD] or fracture rate) as a categorical one, which provides no quantitative information. The present study uses five different machine learning methods to analyze the risk factors for T-score of BMD, seeking to (1) compare the prediction accuracy between different machine learning methods and traditional multiple linear regression (MLR) and (2) rank the importance of 25 different risk factors.

METHODS

The study sample includes 24 412 women older than 55 years with 25 related variables, applying traditional MLR and five different machine learning methods: classification and regression tree, Naïve Bayes, random forest, stochastic gradient boosting, and eXtreme gradient boosting. The metrics used for model performance comparisons are the symmetric mean absolute percentage error, relative absolute error, root relative squared error, and root mean squared error.

RESULTS

Machine learning approaches outperformed MLR for all four prediction errors. The average importance ranking of each factor generated by the machine learning methods indicates that age is the most important factor determining T-score, followed by estimated glomerular filtration rate (eGFR), body mass index (BMI), uric acid (UA), and education level.

CONCLUSION

In a group of women older than 55 years, we demonstrated that machine learning methods provide superior performance in estimating T-Score, with age being the most important impact factor, followed by eGFR, BMI, UA, and education level.

摘要

背景

人口老龄化正成为全球各国日益严峻的挑战。骨质疏松症对个人和国家卫生系统的影响是这一现象的具体表现之一。先前对骨质疏松症危险因素的研究采用了传统的统计方法,但最近的研究转向了机器学习方法。然而,大多数此类研究将目标变量(骨矿物质密度[BMD]或骨折率)视为分类变量,这无法提供定量信息。本研究使用五种不同的机器学习方法来分析 BMD T 评分的危险因素,旨在(1)比较不同机器学习方法与传统多元线性回归(MLR)的预测准确性,以及(2)对 25 个不同危险因素进行重要性排序。

方法

研究样本包括 24412 名年龄大于 55 岁的女性,共 25 个相关变量,应用传统 MLR 和五种不同的机器学习方法:分类回归树、朴素贝叶斯、随机森林、随机梯度提升和极端梯度提升。用于模型性能比较的指标是对称平均绝对百分比误差、相对绝对误差、根相对平方误差和均方根误差。

结果

在所有四个预测误差方面,机器学习方法均优于 MLR。机器学习方法生成的每个因素的平均重要性排名表明,年龄是决定 T 评分最重要的因素,其次是估计肾小球滤过率(eGFR)、体重指数(BMI)、尿酸(UA)和教育水平。

结论

在一组年龄大于 55 岁的女性中,我们证明了机器学习方法在估计 T 评分方面具有卓越的性能,年龄是最重要的影响因素,其次是 eGFR、BMI、UA 和教育水平。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验