Cui Quan-Xiang, Zhou Liang-Qin, Wang Xin-Yi, Zhang Hong-Xia, Li Jing-Jing, Xiong Ming-Cong, Shi Hai-Yang, Zhu Yue-Min, Sang Xi-Qiao, Kuai Zi-Xiang
Imaging Center, Harbin Medical University Cancer Hospital, Haping Road No.150, Nangang District, Harbin 150081, China (Q-X.C., L-Q.Z., X-Y.W., H-X.Z., J-J.L., M-C.X., H-Y.S., Z-X.K.).
Division of Respiratory Disease, Fourth Affiliated Hospital of Harbin Medical University, Harbin 150001, China (Y-M.Z.).
Acad Radiol. 2025 May;32(5):2477-2488. doi: 10.1016/j.acra.2024.12.043. Epub 2025 Jan 6.
To propose a novel MRI-based hyper-fused radiomic approach to predict pathologic complete response (pCR) to neoadjuvant therapy (NAT) in breast cancer (BC).
Pretreatment dynamic contrast-enhanced (DCE) MRI and ultra-multi-b-value (UMB) diffusion-weighted imaging (DWI) data were acquired in BC patients who received NAT followed by surgery at two centers. Hyper-fused radiomic features (RFs) and conventional RFs were extracted from DCE-MRI or UMB-DWI. After feature selection, the following models were built using logistic regression and the retained RFs: hyper-fused model, conventional model, and compound model that integrates the hyper-fused and conventional RFs. The output probability of each model was used to generate a radiomic signature. The model's performance was quantified by the area under the receiver-operating characteristic curve (AUC). Multivariable logistic regression was used to identify variables (clinicopathological variables and the generated radiomic signatures) associated with pCR.
The training/external test set (center 1/2) included 547/295 women. The hyper-fused models (AUCs=0.81-0.85) outperformed (p<0.05) the conventional models (AUCs=0.74-0.80) in predicting pCR. The compound models (AUCs=0.88-0.93) outperformed (p<0.05) the hyper-fused models and conventional models for pCR prediction. The hyper-fused radiomic signatures (odds ratios=5.70-12.98; p<0.05) and compound radiomic signatures (odds ratios=1.57-7.71; p<0.05) were independently associated with pCR. These are true for the training and external test sets.
The hyper-fused radiomic approach had significantly better performance for predicting pCR to NAT than the conventional radiomic approach, and the hyper-fused RFs provided incremental discrimination of pCR beyond the conventional RFs. The generated hyper-fused radiomic signatures were independent predictors of pCR.
提出一种基于MRI的新型超融合放射组学方法,用于预测乳腺癌(BC)新辅助治疗(NAT)后的病理完全缓解(pCR)。
在两个中心对接受NAT并随后接受手术的BC患者进行治疗前动态对比增强(DCE)MRI和超多b值(UMB)扩散加权成像(DWI)数据采集。从DCE-MRI或UMB-DWI中提取超融合放射组学特征(RFs)和传统RFs。经过特征选择后,使用逻辑回归和保留的RFs构建以下模型:超融合模型、传统模型以及整合超融合和传统RFs的复合模型。每个模型的输出概率用于生成放射组学特征。通过受试者操作特征曲线(AUC)下的面积对模型性能进行量化。使用多变量逻辑回归来识别与pCR相关的变量(临床病理变量和生成的放射组学特征)。
训练/外部测试集(中心1/2)包括547/295名女性。在预测pCR方面,超融合模型(AUC = 0.81 - 0.85)优于(p < 0.05)传统模型(AUC = 0.74 - 0.80)。复合模型(AUC = 0.88 - 0.93)在预测pCR方面优于(p < 0.05)超融合模型和传统模型。超融合放射组学特征(优势比 = 5.70 - 12.98;p < 0.05)和复合放射组学特征(优势比 = 1.57 - 7.71;p < 0.05)与pCR独立相关。这在训练集和外部测试集中均成立。
与传统放射组学方法相比,超融合放射组学方法在预测NAT后的pCR方面具有显著更好的性能,并且超融合RFs在传统RFs之外提供了对pCR的增量鉴别。生成的超融合放射组学特征是pCR的独立预测因子。