Suppr超能文献

弥合基于对象的图像分析中计算效率与分割保真度之间的差距。

Bridging the Gap Between Computational Efficiency and Segmentation Fidelity in Object-Based Image Analysis.

作者信息

Aguiar Fernanda Pereira Leite, Nääs Irenilza de Alencar, Okano Marcelo Tsuguio

机构信息

Graduate Program in Production Engineering, Universidade Paulista, Rua Dr. Bacelar 1212, São Paulo 04026-002, SP, Brazil.

出版信息

Animals (Basel). 2024 Dec 16;14(24):3626. doi: 10.3390/ani14243626.

Abstract

A critical issue in image analysis for analyzing animal behavior is accurate object detection and tracking in dynamic and complex environments. This study introduces a novel preprocessing algorithm to bridge the gap between computational efficiency and segmentation fidelity in object-based image analysis for machine learning applications. The algorithm integrates convolutional operations, quantization strategies, and polynomial transformations to optimize image segmentation in complex visual environments, addressing the limitations of traditional pixel-level and unsupervised methods. This innovative approach enhances object delineation and generates structured metadata, facilitating robust feature extraction and consistent object representation across varied conditions. As empirical validation shows, the proposed preprocessing pipeline reduces computational demands while improving segmentation accuracy, particularly in intricate backgrounds. Key features include adaptive object segmentation, efficient metadata creation, and scalability for real-time applications. The methodology's application in domains such as Precision Livestock Farming and autonomous systems highlights its potential for high-accuracy visual data processing. Future work will explore dynamic parameter optimization and algorithm adaptability across diverse datasets to further refine its capabilities. This study presents a scalable and efficient framework designed to advance machine learning applications in complex image analysis tasks by incorporating methodologies for image quantization and automated segmentation.

摘要

在分析动物行为的图像分析中,一个关键问题是在动态和复杂环境中进行准确的目标检测和跟踪。本研究引入了一种新颖的预处理算法,以弥合机器学习应用中基于目标的图像分析在计算效率和分割保真度之间的差距。该算法集成了卷积运算、量化策略和多项式变换,以优化复杂视觉环境中的图像分割,解决传统像素级和无监督方法的局限性。这种创新方法增强了目标描绘并生成结构化元数据,便于在各种条件下进行强大的特征提取和一致的目标表示。实证验证表明,所提出的预处理管道在提高分割准确性的同时降低了计算需求,特别是在复杂背景下。关键特性包括自适应目标分割、高效的元数据创建以及实时应用的可扩展性。该方法在精准畜牧养殖和自主系统等领域的应用凸显了其在高精度视觉数据处理方面的潜力。未来的工作将探索动态参数优化和跨不同数据集的算法适应性,以进一步完善其功能。本研究提出了一个可扩展且高效的框架,旨在通过纳入图像量化和自动分割方法,推进复杂图像分析任务中的机器学习应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7f82/11672607/8f605b7ea308/animals-14-03626-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验