Pang Xin, Chen Jun, Li Linzhi, Huang Wenjuan, Liu Jia
Suzhou Polytechnic Institute of Agriculture, Suzhou 215008, China.
Wulanchabu Academy of Agricultural and Forestry Sciences, Wulanchabu 012000, China.
Biology (Basel). 2024 Dec 20;13(12):1076. doi: 10.3390/biology13121076.
The Solanaceae family, which includes vital crops such as tomatoes, peppers, eggplants, and potatoes, is increasingly impacted by drought due to climate change. Recent research has concentrated on unraveling the molecular mechanisms behind drought resistance in these crops, with a focus on abscisic acid (ABA) signaling pathways, transcription factors (TFs) like MYB (Myeloblastosis), WRKY (WRKY DNA-binding protein), and NAC (NAM, ATAF1/2, and CUC2- NAM: No Apical Meristem, ATAF1/2, and CUC2: Cup-shaped Cotyledon), and the omics approaches. Moreover, transcriptome sequencing (RNA-seq) has been instrumental in identifying differentially expressed genes (DEGs) crucial for drought adaptation. Proteomics studies further reveal changes in protein expression under drought conditions, elucidating stress response mechanisms. Additionally, microRNAs (miRNAs) have been identified as key regulators in drought response. Advances in proteomics and transcriptomics have highlighted key proteins and genes that respond to drought stress, offering new insights into drought tolerance. To address the challenge of drought, future research should emphasize the development of drought-resistant varieties through precision breeding techniques such as gene editing, marker-assisted selection (MAS), and the integration of artificial intelligence. Additionally, the adoption of environmentally sustainable cultivation practices, including precision irrigation and the use of anti-drought agents, is crucial for improving water-use efficiency and crop resilience. International collaboration and data sharing will be essential to accelerate progress and ensure global food security in increasingly arid conditions. These efforts will enable Solanaceae crops to adapt the challenges posed by climate change, ensuring their productivity and sustainability.
茄科包含番茄、辣椒、茄子和土豆等重要作物,由于气候变化,该科作物正日益受到干旱的影响。最近的研究集中在揭示这些作物抗旱背后的分子机制,重点是脱落酸(ABA)信号通路、MYB(髓细胞组织增生)、WRKY(WRKY DNA结合蛋白)和NAC(NAM、ATAF1/2和CUC2——NAM:无顶端分生组织,ATAF1/2和CUC2:杯状子叶)等转录因子以及组学方法。此外,转录组测序(RNA测序)有助于识别对干旱适应至关重要的差异表达基因(DEG)。蛋白质组学研究进一步揭示了干旱条件下蛋白质表达的变化,阐明了应激反应机制。此外,微小RNA(miRNA)已被确定为干旱反应中的关键调节因子。蛋白质组学和转录组学的进展突出了对干旱胁迫作出反应的关键蛋白质和基因,为耐旱性提供了新的见解。为应对干旱挑战,未来的研究应强调通过基因编辑、标记辅助选择(MAS)等精准育种技术以及人工智能的整合来培育抗旱品种。此外,采用包括精准灌溉和使用抗旱剂在内的环境可持续种植 practices,对于提高水分利用效率和作物恢复力至关重要。国际合作和数据共享对于在日益干旱的条件下加速进展并确保全球粮食安全至关重要。这些努力将使茄科作物能够应对气候变化带来的挑战,确保其生产力和可持续性。 (注:原文中“practices”前有个形容词,但未给出完整内容,这里按照字面意思翻译为“种植practices”,可能不太准确,你可根据实际情况补充完整后再调整。)