Suppr超能文献

胶质母细胞瘤中的放射组学共识聚类及其与基因表达谱的关联

Radiomic Consensus Clustering in Glioblastoma and Association with Gene Expression Profiles.

作者信息

Wroblewski Tadeusz H, Karabacak Mert, Seah Carina, Yong Raymund L, Margetis Konstantinos

机构信息

College of Medicine, SUNY Downstate Health Sciences University, Brooklyn, NY 11203, USA.

MD-PhD Program, SUNY Downstate Health Sciences University, Brooklyn, NY 11203, USA.

出版信息

Cancers (Basel). 2024 Dec 21;16(24):4256. doi: 10.3390/cancers16244256.

Abstract

BACKGROUND/OBJECTIVES: Glioblastoma (GBM) is the most common malignant primary central nervous system tumor with extremely poor prognosis and survival outcomes. Non-invasive methods like radiomic feature extraction, which assess sub-visual imaging features, provide a potentially powerful tool for distinguishing molecular profiles across groups of patients with GBM. Using consensus clustering of MRI-based radiomic features, this study aims to investigate differential gene expression profiles based on radiomic clusters.

METHODS

Patients from the TCGA and CPTAC datasets (n = 114) were included in this study. Radiomic features including T1, T1 with contrast, T2, and FLAIR MRI sequences were extracted using PyRadiomics. Selected radiomic features were then clustered using ConsensusClusterPlus (k-means base algorithm and Euclidean distance), which iteratively subsamples and clusters 80% of the data to identify stable clusters by calculating the frequency in which each patient is a member of a cluster across iterations. Gene expression data (available for n = 69 patients) was analyzed using differential gene expression (DEG) and gene set enrichment (GSEA) approaches, after batch correction using ComBat-seq.

RESULTS

Three distinct clusters were identified based on the relative consensus matrix and cumulative distribution plots (Cluster 1, n = 25; Cluster 2, n = 46; Cluster 3, n = 43). No significant differences in patient demographic characteristics, MGMT methylation status, tumor location, or overall survival were identified across clusters. Differentially expressed genes were identified in Cluster 1, which have been previously associated with GBM prognosis, recurrence, and treatment sensitivity. GSEA of Cluster 1 showed an enrichment of genes upregulated for immune-related and DNA metabolism pathways and genes downregulated in pathways associated with protein and histone deacetylation. Clusters 2 and 3 exhibited fewer DEGs which failed to reach significance after multiple testing corrections.

CONCLUSIONS

Consensus clustering of radiomic features revealed unique gene expression profiles in the GBM cohort which likely represent subtle differences in tumor biology and radiosensitivity that are not visually discernible, underscoring the potential of radiomics to serve as a non-invasive alternative for identifying GBM molecular heterogeneity. Further investigation is still required to validate these findings and their clinical implications.

摘要

背景/目的:胶质母细胞瘤(GBM)是最常见的原发性中枢神经系统恶性肿瘤,预后和生存结果极差。像放射组学特征提取这样的非侵入性方法可评估亚视觉成像特征,为区分GBM患者群体的分子特征提供了一个潜在的有力工具。本研究利用基于MRI的放射组学特征的一致性聚类,旨在研究基于放射组学聚类的差异基因表达谱。

方法

本研究纳入了来自TCGA和CPTAC数据集的患者(n = 114)。使用PyRadiomics提取包括T1、T1增强、T2和FLAIR MRI序列在内的放射组学特征。然后使用ConsensusClusterPlus(k均值基础算法和欧几里得距离)对选定的放射组学特征进行聚类,该算法对80%的数据进行迭代子采样和聚类,通过计算每个患者在各次迭代中作为一个聚类成员的频率来识别稳定的聚类。在使用ComBat-seq进行批次校正后,使用差异基因表达(DEG)和基因集富集(GSEA)方法分析基因表达数据(n = 69例患者可用)。

结果

根据相对一致性矩阵和累积分布图确定了三个不同的聚类(聚类1,n = 25;聚类2,n = 46;聚类3,n = 43)。各聚类间在患者人口统计学特征、MGMT甲基化状态、肿瘤位置或总生存方面未发现显著差异。在聚类1中鉴定出差异表达基因,这些基因先前已与GBM的预后、复发和治疗敏感性相关。聚类1的GSEA显示免疫相关和DNA代谢途径上调的基因以及与蛋白质和组蛋白去乙酰化相关途径下调的基因富集。聚类2和3显示的差异表达基因较少,在多次检验校正后未达到显著性。

结论

放射组学特征的一致性聚类揭示了GBM队列中独特的基因表达谱,这可能代表了肿瘤生物学和放射敏感性方面的细微差异,而这些差异在视觉上无法辨别,强调了放射组学作为识别GBM分子异质性的非侵入性替代方法的潜力。仍需要进一步研究来验证这些发现及其临床意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2bc4/11674874/3442a7e4bae1/cancers-16-04256-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验