Lu Yunrui, Wu Shuang, Zhu Shiyu, Shen Jian, Liu Chang, Zhao Chaoyue, Su Sheng'an, Ma Hong, Xiang Meixiang, Xie Yao
State Key Laboratory of Transvascular Implantation Devices, Heart Regeneration and Repair Key Laboratory of Zhejiang Province, Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China.
Biomolecules. 2024 Dec 16;14(12):1606. doi: 10.3390/biom14121606.
Foam cell formation is a hallmark of atherosclerosis, yet the cellular complexity within foam cells in human plaques remains unexplored. Here, we integrate published single-cell RNA-sequencing, spatial transcriptomic, and chromatin accessibility sequencing datasets of human atherosclerotic lesions across eight distinct studies. Through this large-scale integration of patient-derived information, we identified foamy macrophages enriched for genes characteristic of the foamy signature. We further re-clustered the foamy macrophages into five unique subsets with distinct potential functions: (i) pro-foamy macrophages, exhibiting relatively high inflammatory and adhesive properties; (ii) phagocytic foamy macrophages, specialized in efferocytosis; (iii) high-efflux foamy macrophages marked by high expression; (iv) mature foamy macrophages prone to programmed cell death; and (v) synthetic subset. Trajectory analysis elucidated a bifurcated differentiation cell fate from pro-foam macrophages toward either the programmed death (iv) or synthetic (v) phenotype. The existence of these foamy macrophage subsets was validated by immunostaining. Moreover, these foamy macrophage subsets exhibited strong potential ligand-receptor interactions. Finally, we conducted Mendelian randomization analyses to identify a possible causal relationship between key regulatory genes along the programmed death pathway in foamy macrophages and atherosclerotic diseases. This study provides a high-resolution map of foam cell diversity and a set of potential key regulatory genes in atherosclerotic plaques, offering novel insights into the multifaceted pathophysiology underlying human atherosclerosis.
泡沫细胞形成是动脉粥样硬化的一个标志,但人类斑块中泡沫细胞内的细胞复杂性仍未得到探索。在这里,我们整合了八项不同研究中已发表的人类动脉粥样硬化病变的单细胞RNA测序、空间转录组学和染色质可及性测序数据集。通过对患者来源信息的大规模整合,我们鉴定出富含泡沫细胞特征基因的泡沫巨噬细胞。我们进一步将泡沫巨噬细胞重新聚类为五个具有不同潜在功能的独特亚群:(i)促泡沫巨噬细胞,表现出相对较高的炎症和黏附特性;(ii)吞噬性泡沫巨噬细胞,专门进行胞葬作用;(iii)以高表达为特征的高外流泡沫巨噬细胞;(iv)易于程序性细胞死亡的成熟泡沫巨噬细胞;以及(v)合成亚群。轨迹分析阐明了从促泡沫巨噬细胞向程序性死亡(iv)或合成(v)表型的分叉分化细胞命运。这些泡沫巨噬细胞亚群的存在通过免疫染色得到验证。此外,这些泡沫巨噬细胞亚群表现出强烈的潜在配体-受体相互作用。最后,我们进行了孟德尔随机化分析,以确定泡沫巨噬细胞中程序性死亡途径上的关键调控基因与动脉粥样硬化疾病之间可能的因果关系。本研究提供了泡沫细胞多样性的高分辨率图谱以及动脉粥样硬化斑块中的一组潜在关键调控基因,为人类动脉粥样硬化潜在的多方面病理生理学提供了新的见解。