Suppr超能文献

利用超声回波信号特征和机器学习对脑水肿进行无创监测

Non-Invasive Monitoring of Cerebral Edema Using Ultrasonic Echo Signal Features and Machine Learning.

作者信息

Yang Shuang, Yang Yuanbo, Zhou Yufeng

机构信息

State Key Laboratory of Ultrasound in Medicine and Engineering, Chongqing Medical University, Chongqing 400016, China.

Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, China.

出版信息

Brain Sci. 2024 Nov 23;14(12):1175. doi: 10.3390/brainsci14121175.

Abstract

OBJECTIVES

Cerebral edema, a prevalent consequence of brain injury, is associated with significant mortality and disability. Timely diagnosis and monitoring are crucial for patient prognosis. There is a pressing clinical demand for a real-time, non-invasive cerebral edema monitoring method. Ultrasound methods are prime candidates for such investigations due to their non-invasive nature.

METHODS

Acute cerebral edema was introduced in rats by permanently occluding the left middle cerebral artery (MCA). Ultrasonic echo signals were collected at nine time points over a 24 h period to extract features from both the time and frequency domains. Concurrently, histomorphological changes were examined. We utilized support vector machine (SVM), logistic regression (LogR), decision tree (DT), and random forest (RF) algorithms for classifying cerebral edema types, and SVM, RF, linear regression (LR), and feedforward neural network (FNNs) for predicting the cerebral infarction volume ratio.

RESULTS

The integration of 16 ultrasonic features associated with cerebral edema development with the RF model enabled effective classification of cerebral edema types, with a high accuracy rate of 97.9%. Additionally, it provided an accurate prediction of the cerebral infarction volume ratio, with an value of 0.8814.

CONCLUSIONS

Our proposed strategy classifies cerebral edema and predicts the cerebral infarction volume ratio with satisfactory precision. The fusion of ultrasound echo features with machine learning presents a promising non-invasive approach for the monitoring of cerebral edema.

摘要

目的

脑水肿是脑损伤的常见后果,与显著的死亡率和残疾率相关。及时诊断和监测对患者预后至关重要。临床上迫切需要一种实时、非侵入性的脑水肿监测方法。由于其非侵入性,超声方法是此类研究的主要候选方法。

方法

通过永久性阻断大鼠左侧大脑中动脉(MCA)诱导急性脑水肿。在24小时内的九个时间点收集超声回波信号,以从时域和频域提取特征。同时,检查组织形态学变化。我们使用支持向量机(SVM)、逻辑回归(LogR)、决策树(DT)和随机森林(RF)算法对脑水肿类型进行分类,并使用SVM、RF、线性回归(LR)和前馈神经网络(FNN)预测脑梗死体积比。

结果

将与脑水肿发展相关的16个超声特征与RF模型相结合,能够有效分类脑水肿类型,准确率高达97.9%。此外,它还能准确预测脑梗死体积比,相关系数为0.8814。

结论

我们提出的策略能够以令人满意的精度对脑水肿进行分类并预测脑梗死体积比。超声回波特征与机器学习的融合为脑水肿监测提供了一种有前景的非侵入性方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fda9/11674144/a7f9bc5b3ed0/brainsci-14-01175-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验