Suppr超能文献

利用超声射频回波信号的经验小波变换分析对红细胞聚集进行分类。

Classification of red blood cell aggregation using empirical wavelet transform analysis of ultrasonic radiofrequency echo signals.

机构信息

Department of Electronic Engineering, Information School, Yunnan University, Kunming, Yunnan 650091, China; School of Rehabilitation, Kunming Medical University, Kunming, Yunnan 650500, China.

Department of Electronic Engineering, Information School, Yunnan University, Kunming, Yunnan 650091, China.

出版信息

Ultrasonics. 2021 Jul;114:106419. doi: 10.1016/j.ultras.2021.106419. Epub 2021 Mar 6.

Abstract

Grading red blood cell (RBC) aggregation is important for the early diagnosis and prevention of related diseases such as ischemic cardio-cerebrovascular disease, type II diabetes, deep vein thrombosis, and sickle cell disease. In this study, a machine learning technique based on an adaptive analysis of ultrasonic radiofrequency (RF) echo signals in blood is proposed, and its feasibility for classifying RBC aggregation is explored. Using an adaptive empirical wavelet transform (EWT) analysis, the ultrasonic RF signals are decomposed into a series of empirical mode functions (EMFs); then, dominant empirical mode functions (DEMFs) are selected from the series. Six statistical characteristics, including the mean, variance, median, kurtosis, root mean square (RMS), and skewness are calculated for the locally normalized DEMFs, aiming to form primary feature vectors. Random forest (RDF) and support vector machine (SVM) classifiers are trained with the given feature vectors to obtain prediction models for RBC classification. Ultrasonic RF echo signals are acquired from five groups of six types of porcine blood samples with average numbers of aggregated RBCs of 1.04, 1.20, 1.83, 2.31, 2.72, and 4.28, respectively, to test the classification performance of the proposed method. The best subset with regard to the variance, kurtosis, and RMS is determined according to the maximum accuracy based on the RDF and SVM classifiers. The classification accuracies are 84.03 ± 3.13% for the RDF classifier, and 85.88 ± 2.99% for the SVM classifier. The mean classification accuracy of the SVM classifier is 1.85% better than that of the RDF classifier. In conclusion, the machine learning method is useful for the discrimination of varying degrees of RBC aggregation, and has potential for use in characterizing and monitoring the RBC aggregation in vessels.

摘要

红细胞(RBC)聚集程度的分级对于缺血性心脑血管疾病、2 型糖尿病、深静脉血栓形成和镰状细胞病等相关疾病的早期诊断和预防非常重要。在本研究中,提出了一种基于血液超声射频(RF)回波信号自适应分析的机器学习技术,并探讨了其对 RBC 聚集分类的可行性。该方法采用自适应经验模态分解(EWT)分析,将超声 RF 信号分解为一系列经验模态函数(EMFs);然后,从该系列中选择主要经验模态函数(DEMFs)。对局部归一化 DEMFs 计算六个统计特征,包括均值、方差、中位数、峰度、均方根(RMS)和偏度,以形成原始特征向量。使用随机森林(RDF)和支持向量机(SVM)分类器对给定的特征向量进行训练,以获得 RBC 分类的预测模型。从平均聚集 RBC 数分别为 1.04、1.20、1.83、2.31、2.72 和 4.28 的五组六种类型的猪血液样本中获取超声 RF 回波信号,以测试所提出方法的分类性能。根据 RDF 和 SVM 分类器的最大准确性,确定方差、峰度和 RMS 的最佳子集。RDF 分类器的分类准确率为 84.03±3.13%,SVM 分类器的分类准确率为 85.88±2.99%。SVM 分类器的平均分类准确率比 RDF 分类器高 1.85%。综上所述,该机器学习方法有助于区分不同程度的 RBC 聚集,并且有可能用于描述和监测血管中 RBC 的聚集情况。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验