Suppr超能文献

识别不同时间尺度上的序数相似性。

Identifying Ordinal Similarities at Different Temporal Scales.

作者信息

Zunino Luciano, Porte Xavier, Soriano Miguel C

机构信息

Centro de Investigaciones Ópticas (CONICET La Plata-CIC-UNLP), Gonnet 1897, La Plata, Argentina.

Departamento de Ciencias Básicas, Facultad de Ingeniería, Universidad Nacional de La Plata (UNLP), La Plata 1900, Argentina.

出版信息

Entropy (Basel). 2024 Nov 24;26(12):1016. doi: 10.3390/e26121016.

Abstract

This study implements the permutation Jensen-Shannon distance as a metric for discerning ordinal patterns and similarities across multiple temporal scales in time series data. Initially, we present a numerically controlled analysis to validate the multiscale capabilities of this method. Subsequently, we apply our methodology to a complex photonic system, showcasing its practical utility in a real-world scenario. Our findings suggest that this approach is a powerful tool for identifying the precise temporal scales at which two distinct time series exhibit ordinal similarity. Given its robustness, we anticipate that this method could be widely applicable across various scientific disciplines, offering a new lens through which to analyze time series data.

摘要

本研究采用排列詹森 - 香农距离作为一种度量,用于辨别时间序列数据中多个时间尺度上的有序模式和相似性。首先,我们进行了数值控制分析,以验证该方法的多尺度能力。随后,我们将我们的方法应用于一个复杂的光子系统,展示了其在实际场景中的实用性。我们的研究结果表明,这种方法是一种强大的工具,可用于识别两个不同时间序列表现出有序相似性的精确时间尺度。鉴于其稳健性,我们预计这种方法可广泛应用于各种科学学科,为分析时间序列数据提供一个新的视角。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8d46/11727087/4e23c947b3bb/entropy-26-01016-g0A1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验