Palma-Chilla L, Lazzús Juan A
Departamento de Física, Universidad de La Serena, Casilla 554, La Serena 1700000, Chile.
Instituto de Investigación Multidisciplinario en Ciencias y Tecnología, Universidad de La Serena, Casilla 554, La Serena 1700000, Chile.
Entropy (Basel). 2024 Dec 14;26(12):1093. doi: 10.3390/e26121093.
This study investigates the effect of incorporating heavy dopant atoms on the topological transitions in the energy spectrum of graphene, as well as on its thermodynamic properties. A tight-binding model is employed that incorporates a lattice composition parameter associated with the dopant's effect to obtain the electronic spectrum of graphene. Thus, the substitutional atoms in the lattice impact the electronic structure of graphene by altering the connectivity of the Dirac cones and the symmetry of the energy surface in their spectrum. The Gibbs entropy is numerically calculated from the energy surface of the electronic spectrum, and other thermodynamic properties, such as temperature, specific heat, and Helmholtz free energy, are derived from theoretical principles. The results show that topological changes induced by the heavy dopant atoms in the graphene lattice significantly affect its electronic structure and thermodynamic properties, leading to observable changes in the distances between Dirac cones, the range of the energy spectrum, entropy, positive and negative temperatures, divergences in specific heat, and instabilities within the system.
本研究调查了掺入重掺杂原子对石墨烯能谱中的拓扑转变及其热力学性质的影响。采用了一个紧束缚模型,该模型纳入了一个与掺杂效应相关的晶格组成参数,以获得石墨烯的电子能谱。因此,晶格中的替代原子通过改变狄拉克锥的连通性及其能谱中能量表面的对称性来影响石墨烯的电子结构。吉布斯熵从电子能谱的能量表面进行数值计算,而其他热力学性质,如温度、比热和亥姆霍兹自由能,则从理论原理推导得出。结果表明,石墨烯晶格中的重掺杂原子引起的拓扑变化显著影响其电子结构和热力学性质,导致狄拉克锥之间的距离、能谱范围、熵、正负温度、比热发散以及系统内的不稳定性出现可观测的变化。