Suppr超能文献

用于室温下增强氨传感的硼掺杂少层石墨烯纳米片气体传感器。

Boron-doped few-layer graphene nanosheet gas sensor for enhanced ammonia sensing at room temperature.

作者信息

Srivastava Shubhda, Jain Shubhendra K, Gupta Govind, Senguttuvan T D, Gupta Bipin Kumar

机构信息

CSIR-National Physical Laboratory Dr K S Krishnan Road New Delhi 110012 India

Academy of Scientific and Innovative Research (AcSIR), CSIR-National Physical Laboratory Campus Dr K S Krishnan Road New Delhi 110012 India.

出版信息

RSC Adv. 2020 Jan 3;10(2):1007-1014. doi: 10.1039/c9ra08707a. eCollection 2020 Jan 2.

Abstract

Heteroatom doping in graphene is now a practiced way to alter its electronic and chemical properties to design a highly-efficient gas sensor for practical applications. In this series, here we propose boron-doped few-layer graphene for enhanced ammonia gas sensing, which could be a potential candidate for designing a sensing device. A facile approach has been used for synthesizing boron-doped few-layer graphene (BFLGr) by using a low-pressure chemical vapor deposition (LPCVD) method. Further, Raman spectroscopy has been performed to confirm the formation of graphene and XPS and FESEM characterization were carried out to validate the boron doping in the graphene lattice. To fabricate the gas sensing device, an Si/SiO substrate with gold patterned electrodes was used. More remarkably, the BFLGr-based sensor exhibits an extremely quick response for ammonia gas sensing with fast recovery at ambient conditions. Hence, the obtained results for the BFLGr-based gas sensor provide a new platform to design next-generation lightweight and fast gas sensing devices.

摘要

在石墨烯中进行杂原子掺杂是目前一种改变其电子和化学性质的常用方法,以便设计出适用于实际应用的高效气体传感器。在本系列研究中,我们在此提出硼掺杂少层石墨烯用于增强氨气传感,它可能是设计传感装置的一个潜在候选材料。通过使用低压化学气相沉积(LPCVD)方法,已采用一种简便的方法来合成硼掺杂少层石墨烯(BFLGr)。此外,已进行拉曼光谱分析以确认石墨烯的形成,并开展X射线光电子能谱(XPS)和场发射扫描电子显微镜(FESEM)表征以验证硼在石墨烯晶格中的掺杂情况。为制造气体传感装置,使用了带有金图案化电极的Si/SiO₂ 衬底。更值得注意的是,基于BFLGr的传感器对氨气传感表现出极快的响应,并在环境条件下能够快速恢复。因此,基于BFLGr的气体传感器所获得的结果为设计下一代轻质快速气体传感装置提供了一个新平台。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/71c6/9047397/1f49b84f11ea/c9ra08707a-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验