Suppr超能文献

不可逆热机的基本极限

Fundamental Limits of an Irreversible Heat Engine.

作者信息

Fu Rui

机构信息

Center for Advanced Control and Smart Operations, Nanjing University, Suzhou 215163, China.

出版信息

Entropy (Basel). 2024 Dec 23;26(12):1128. doi: 10.3390/e26121128.

Abstract

We investigated the optimal performance of an irreversible Stirling-like heat engine described by both overdamped and underdamped models within the framework of stochastic thermodynamics. By establishing a link between energy dissipation and Wasserstein distance, we derived the upper bound of maximal power that can be delivered over a complete engine cycle for both models. Additionally, we analytically developed an optimal control strategy to achieve this upper bound of maximal power and determined the efficiency at maximal power in the overdamped scenario.

摘要

我们在随机热力学框架内研究了由过阻尼和欠阻尼模型描述的不可逆类斯特林热机的最佳性能。通过建立能量耗散与瓦瑟斯坦距离之间的联系,我们推导出了这两种模型在一个完整发动机循环中能够输出的最大功率的上限。此外,我们通过解析方法制定了一种最优控制策略以实现最大功率的这一上限,并确定了过阻尼情况下最大功率时的效率。

相似文献

1
Fundamental Limits of an Irreversible Heat Engine.
Entropy (Basel). 2024 Dec 23;26(12):1128. doi: 10.3390/e26121128.
2
Optimal control theory for maximum power of Brownian heat engines.
Phys Rev E. 2024 Oct;110(4):L042105. doi: 10.1103/PhysRevE.110.L042105.
3
Maximum-Power Stirling-like Heat Engine with a Harmonically Confined Brownian Particle.
Entropy (Basel). 2025 Jan 15;27(1):72. doi: 10.3390/e27010072.
4
Fast-forward approach to stochastic heat engine.
Phys Rev E. 2020 Jul;102(1-1):012129. doi: 10.1103/PhysRevE.102.012129.
5
Overdamped stochastic thermodynamics with multiple reservoirs.
Phys Rev E. 2016 Dec;94(6-1):062148. doi: 10.1103/PhysRevE.94.062148. Epub 2016 Dec 29.
8
Quasilinear irreversible thermodynamics of a low-temperature-differential kinematic Stirling heat engine.
Phys Rev E. 2020 Jul;102(1-1):012142. doi: 10.1103/PhysRevE.102.012142.
9
The underdamped Brownian duet and stochastic linear irreversible thermodynamics.
Chaos. 2017 Oct;27(10):104601. doi: 10.1063/1.5001187.
10
Thermodynamics of underdamped Brownian collisional engines: General features and resonant phenomena.
Phys Rev E. 2024 Nov;110(5-1):054125. doi: 10.1103/PhysRevE.110.054125.

本文引用的文献

1
Carnot, Stirling, and Ericsson stochastic heat engines: Efficiency at maximum power.
Phys Rev E. 2023 Jul;108(1-1):014123. doi: 10.1103/PhysRevE.108.014123.
2
3
Stochastic control and non-equilibrium thermodynamics: fundamental limits.
IEEE Trans Automat Contr. 2020 Jul;65(7):1. doi: 10.1109/tac.2019.2939625. Epub 2019 Sep 5.
4
Brownian Carnot engine.
Nat Phys. 2016 Jan;12(1):67-70. doi: 10.1038/NPHYS3518.
5
Optimal performance of periodically driven, stochastic heat engines under limited control.
Phys Rev E. 2016 Apr;93:042112. doi: 10.1103/PhysRevE.93.042112. Epub 2016 Apr 13.
6
All-optical nanomechanical heat engine.
Phys Rev Lett. 2015 May 8;114(18):183602. doi: 10.1103/PhysRevLett.114.183602. Epub 2015 May 6.
7
Stochastic thermodynamics, fluctuation theorems and molecular machines.
Rep Prog Phys. 2012 Dec;75(12):126001. doi: 10.1088/0034-4885/75/12/126001. Epub 2012 Nov 20.
8
Optimal protocols for minimal work processes in underdamped stochastic thermodynamics.
J Chem Phys. 2008 Jul 14;129(2):024114. doi: 10.1063/1.2948948.
9
Fluctuation theorems.
Annu Rev Phys Chem. 2008;59:603-33. doi: 10.1146/annurev.physchem.58.032806.104555.
10
Dissipation: the phase-space perspective.
Phys Rev Lett. 2007 Feb 23;98(8):080602. doi: 10.1103/PhysRevLett.98.080602. Epub 2007 Feb 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验