Suppr超能文献

利用2008 - 2009年和2017 - 2018年巴西家庭预算调查(POF)食品消费数据库评估巴西人群中食用色素的膳食暴露情况

Food Colors' Dietary Exposure in the Brazilian Population Using the 2008-2009 and 2017-2018 POF Food Consumption Databases.

作者信息

Pôrto Larissa Bertollo Gomes, Bragotto Adriana Pavesi Arisseto

机构信息

Faculdade de Engenharia de Alimentos, Universidade Estadual de Campinas, Cidade Universitária, R. Monteiro Lobato 80, Campinas 13083-862, Brazil.

Brazilian Health Regulatory Agency (ANVISA), SIA Trecho 5 Área Especial 57, Brasília 71205-050, Brazil.

出版信息

Foods. 2024 Dec 11;13(24):4006. doi: 10.3390/foods13244006.

Abstract

Two out of the four steps of risk assessment for chemical substances in food, i.e., exposure assessment and risk characterization, merit regional evaluation based on current legislation and local food consumption data. Therefore, mean and high exposures to food colors were estimated in Brazil using a conservative approach to screen substances with a higher risk of the exceedance of safety parameters. Brazilian National Consumption Surveys from the Household Budget Surveys (POF-Pesquisa de Orçamentos Familiares) from 2008-2009 and 2017-2018 were combined with the maximum permitted levels of 33 food colors. Higher exposure estimates were obtained for the oldest POF database. High priority for a refined exposure assessment was identified for six food colors for which the mean and high exposures were higher than the safety parameters, while medium priority was observed for eleven food colors for which the mean exposures were below but the high exposures were above the safety parameters. Low priority was noted for 16 substances for which no exceedance was obtained despite the conservativeness of the methodology applied. The prioritization of food colors for future risk assessments was achieved to identify substances for which more refined exposure methodologies are necessary to characterize the risk to health.

摘要

食品中化学物质风险评估的四个步骤中的两个步骤,即暴露评估和风险特征描述,值得根据现行法规和当地食品消费数据进行区域评估。因此,在巴西采用保守方法估计了食品色素的平均暴露量和高暴露量,以筛选出安全参数超标风险较高的物质。将2008 - 2009年和2017 - 2018年家庭预算调查(POF - Pesquisa de Orçamentos Familiares)中的巴西国家消费调查数据与33种食品色素的最大允许水平相结合。从最旧的POF数据库中获得了更高的暴露估计值。对于六种食品色素,确定了进行精细暴露评估的高优先级,其平均暴露量和高暴露量高于安全参数;对于十一种食品色素,确定了中等优先级,其平均暴露量低于安全参数但高暴露量高于安全参数。对于16种物质,尽管所采用的方法较为保守,但未发现超标情况,因此确定其优先级较低。通过对食品色素进行优先级排序,以确定未来风险评估所需的物质,这些物质需要更精细的暴露方法来描述对健康的风险。

相似文献

3
4
Tiered intake assessment for food colours.分级摄入评估食物颜色。
Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 2020 Jul;37(7):1118-1134. doi: 10.1080/19440049.2020.1736341. Epub 2020 Mar 30.
6
Dietary glycation compounds - implications for human health.饮食糖化化合物 - 对人类健康的影响。
Crit Rev Toxicol. 2024 Sep;54(8):485-617. doi: 10.1080/10408444.2024.2362985. Epub 2024 Aug 16.
9
Ultra-processed foods and the nutritional dietary profile in Brazil.巴西的超加工食品与营养膳食状况
Rev Saude Publica. 2015;49:38. doi: 10.1590/S0034-8910.2015049006132. Epub 2015 Jul 10.

本文引用的文献

1
Using labelling information to evaluate the distribution of food additives in products marketed in Brazil.利用标签信息评估巴西市场销售产品中食品添加剂的分布。
Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 2023 Nov;40(11):1412-1422. doi: 10.1080/19440049.2023.2271978. Epub 2023 Nov 6.
3
Can the intake of synthetic food colour Amaranth (INS 123) put the health of Brazilian consumers at risk?合成食用色素苋菜红(INS 123)的摄入会对巴西消费者的健康造成风险吗?
Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 2022 Jul;39(7):1222-1238. doi: 10.1080/19440049.2022.2068807. Epub 2022 Apr 27.
5
Estimate of the theoretical maximum daily intake of Sunset Yellow FCF by the Brazilian population.巴西人口日落黄FCF理论最大日摄入量的估计值。
Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 2017 May;34(5):687-694. doi: 10.1080/19440049.2017.1290829. Epub 2017 Feb 20.
6
Comparison of food colour regulations in the EU and the US: a review of current provisions.欧盟与美国食品颜色法规比较:现行规定综述
Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 2017 Mar;34(3):335-355. doi: 10.1080/19440049.2016.1274431. Epub 2017 Jan 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验