García-Guzmán Lucia, Velazquez Gonzalo, Arzate-Vázquez Israel, Castaño-Rivera Patricia, Guerra-Valle Maria, Castaño Johanna, Guadarrama-Lezama Andrea Y
Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón esq. Paseo Tollocan s/n, Col. Residencial Colón, Toluca 50120, Estado de Mexico, Mexico.
Tecnológico Nacional de México/Tecnológico de Estudios Superiores de San Felipe del Progreso, División Ingenieria Civil, Avenida Instituto Tecnológico S/N, Ejido, Tecnológico, San Felipe del Progreso 50640, Estado de México, Mexico.
Foods. 2024 Dec 20;13(24):4129. doi: 10.3390/foods13244129.
This study explored the effect of incorporating cellulose and starch nanoparticles, obtained from the Willd plant, on the physical and chemical properties of starch-based films derived from the same plant. Additionally, the synergistic effect of combining the nanostructures was assessed. The nanocomposite biopolymer films were prepared by the casting method using 1 and 3 wt% concentrations of the nanostructures (CNCs: cellulose nanocrystals, CNFs: cellulose nanofibers, SNCs: starch nanocrystals), or their blend. The physicochemical (swelling capacity and water solubility), morphological (SEM and AFM), thermal (DSC and TGA), and mechanical properties (tensile strength, elongation at break, and Young's modulus) of the films were evaluated. The nanocomposite biopolymer films exhibited better dimensional stability (40-60%) than the control films. Tensile strength (8-300%) and Young's modulus (15-690%) were improved. Moreover, these films displayed enhanced thermal stability, withstanding temperatures exceeding 305 °C. FTIR spectra evidenced intermolecular interaction among the matrix and nanostructures. Microscopic analyses further supported the integrity of the films, which displayed a homogeneous surface and the absence of fractures. In addition, the nanocomposite biopolymer films prepared with 1 wt% cellulose nanocrystals and nanofibers had a lower opacity than those with a higher percentage (3 wt%). Overall, our findings suggest that the Willd is a promising starch source that can be used to obtain nanocomposite biopolymer films as an alternative to produce novel, efficient, and eco-friendly materials with adequate thermo-mechanical properties intended to replace conventional plastic materials in single-use applications such as those used in the food packaging industry.
本研究探讨了从野生植物中获得的纤维素和淀粉纳米颗粒对源自同一植物的淀粉基薄膜物理和化学性质的影响。此外,还评估了将这些纳米结构组合后的协同效应。通过流延法制备纳米复合生物聚合物薄膜,使用1 wt%和3 wt%浓度的纳米结构(CNCs:纤维素纳米晶体,CNFs:纤维素纳米纤维,SNCs:淀粉纳米晶体)或它们的混合物。对薄膜的物理化学性质(溶胀能力和水溶性)、形态学性质(扫描电子显微镜和原子力显微镜)、热性质(差示扫描量热法和热重分析法)以及力学性能(拉伸强度、断裂伸长率和杨氏模量)进行了评估。纳米复合生物聚合物薄膜表现出比对照薄膜更好的尺寸稳定性(40 - 60%)。拉伸强度(提高了8 - 300%)和杨氏模量(提高了15 - 690%)得到改善。此外,这些薄膜表现出增强的热稳定性,能承受超过305℃的温度。傅里叶变换红外光谱证明了基质与纳米结构之间的分子间相互作用。微观分析进一步支持了薄膜的完整性,其表面均匀且无裂缝。此外,用1 wt%纤维素纳米晶体和纳米纤维制备的纳米复合生物聚合物薄膜的不透明度低于较高百分比(3 wt%)的薄膜。总体而言,我们的研究结果表明,该野生植物是一种有前景的淀粉来源,可用于制备纳米复合生物聚合物薄膜,作为一种替代品,以生产具有适当热机械性能的新型、高效且环保的材料,旨在替代食品包装行业等一次性应用中的传统塑料材料。