Yusufoğlu Elif, Fırat Hüseyin, Üzen Hüseyin, Özçelik Salih Taha Alperen, Çiçek İpek Balıkçı, Şengür Abdulkadir, Atila Orhan, Guldemir Numan Halit
Department of Ophthalmology, Elazig Fethi Sekin City Hospital, 23100 Elazig, Türkiye.
Department of Computer Engineering, Faculty of Engineering, Dicle University, 21000 Diyarbakır, Türkiye.
Diagnostics (Basel). 2024 Dec 17;14(24):2836. doi: 10.3390/diagnostics14242836.
: Age-related macular degeneration (AMD) is a significant cause of vision loss in older adults, often progressing without early noticeable symptoms. Deep learning (DL) models, particularly convolutional neural networks (CNNs), demonstrate potential in accurately diagnosing and classifying AMD using medical imaging technologies like optical coherence to-mography (OCT) scans. This study introduces a novel CNN-based DL method for AMD diagnosis, aiming to enhance computational efficiency and classification accuracy. : The proposed method (PM) combines modified Inception modules, Depthwise Squeeze-and-Excitation Blocks, and ConvMixer architecture. Its effectiveness was evaluated on two datasets: a private dataset with 2316 images and the public Noor dataset. Key performance metrics, including accuracy, precision, recall, and F1 score, were calculated to assess the method's diagnostic performance. : On the private dataset, the PM achieved outstanding performance: 97.98% accuracy, 97.95% precision, 97.77% recall, and 97.86% F1 score. When tested on the public Noor dataset, the method reached 100% across all evaluation metrics, outperforming existing DL approaches. : These results highlight the promising role of AI-based systems in AMD diagnosis, of-fering advanced feature extraction capabilities that can potentially enable early detection and in-tervention, ultimately improving patient care and outcomes. While the proposed model demon-strates promising performance on the datasets tested, the study is limited by the size and diversity of the datasets. Future work will focus on external clinical validation to address these limita-tions.
年龄相关性黄斑变性(AMD)是老年人视力丧失的一个重要原因,通常在没有早期明显症状的情况下进展。深度学习(DL)模型,特别是卷积神经网络(CNN),在使用光学相干断层扫描(OCT)扫描等医学成像技术准确诊断和分类AMD方面显示出潜力。本研究介绍了一种基于CNN的新型DL方法用于AMD诊断,旨在提高计算效率和分类准确率。
所提出的方法(PM)结合了改进的Inception模块、深度可分离挤压激励块和ConvMixer架构。在两个数据集上评估了其有效性:一个包含2316张图像的私有数据集和公共的Noor数据集。计算了包括准确率、精确率、召回率和F1分数在内的关键性能指标,以评估该方法的诊断性能。
在私有数据集上,PM取得了出色的性能:准确率为97.98%,精确率为97.95%,召回率为97.77%,F1分数为97.86%。在公共的Noor数据集上进行测试时,该方法在所有评估指标上均达到100%优于现有的DL方法。
这些结果突出了基于人工智能的系统在AMD诊断中的前景,提供了先进的特征提取能力,有可能实现早期检测和干预,最终改善患者护理和治疗结果。虽然所提出的模型在测试数据集上表现出了良好的性能,但该研究受到数据集规模和多样性的限制。未来的工作将集中在外部临床验证以解决这些限制。