文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于深度学习的新型智能系统,用于检测 OCT 图像中的 DME 和 AMD。

A new intelligent system based deep learning to detect DME and AMD in OCT images.

机构信息

Laboratory of Biophysics and Medical Technologies, Higher Institute of Medical Technologies of Tunis, University of Tuins El Manar, 1006, Tunis, Tunisia.

Laboratory of Biophysics and Medical Technologies, National Engineering School of Carthage, 2035, Tunis, Tunisia.

出版信息

Int Ophthalmol. 2024 Apr 23;44(1):191. doi: 10.1007/s10792-024-03115-8.


DOI:10.1007/s10792-024-03115-8
PMID:38653842
Abstract

Optical Coherence Tomography (OCT) is widely recognized as the leading modality for assessing ocular retinal diseases, playing a crucial role in diagnosing retinopathy while maintaining a non-invasive modality. The increasing volume of OCT images underscores the growing importance of automating image analysis. Age-related diabetic Macular Degeneration (AMD) and Diabetic Macular Edema (DME) are the most common cause of visual impairment. Early detection and timely intervention for diabetes-related conditions are essential for preventing optical complications and reducing the risk of blindness. This study introduces a novel Computer-Aided Diagnosis (CAD) system based on a Convolutional Neural Network (CNN) model, aiming to identify and classify OCT retinal images into AMD, DME, and Normal classes. Leveraging CNN efficiency, including feature learning and classification, various CNN, including pre-trained VGG16, VGG19, Inception_V3, a custom from scratch model, BCNN (VGG16) , BCNN (VGG19) , and BCNN (Inception_V3) , are developed for the classification of AMD, DME, and Normal OCT images. The proposed approach has been evaluated on two datasets, including a DUKE public dataset and a Tunisian private dataset. The combination of the Inception_V3 model and the extracted feature from the proposed custom CNN achieved the highest accuracy value of 99.53% in the DUKE dataset. The obtained results on DUKE public and Tunisian datasets demonstrate the proposed approach as a significant tool for efficient and automatic retinal OCT image classification.

摘要

光学相干断层扫描(OCT)被广泛认为是评估眼部视网膜疾病的主要方式,在诊断视网膜病变的同时保持非侵入性,起着至关重要的作用。OCT 图像数量的增加突显了自动图像分析的重要性。与年龄相关的糖尿病性黄斑变性(AMD)和糖尿病性黄斑水肿(DME)是视力障碍的最常见原因。早期发现和及时干预糖尿病相关疾病对于预防光学并发症和降低失明风险至关重要。本研究介绍了一种基于卷积神经网络(CNN)模型的新型计算机辅助诊断(CAD)系统,旨在识别和分类 OCT 视网膜图像为 AMD、DME 和正常三类。利用 CNN 的效率,包括特征学习和分类,开发了各种 CNN,包括预训练的 VGG16、VGG19、Inception_V3、从头开始的自定义模型、BCNN(VGG16)、BCNN(VGG19)和 BCNN(Inception_V3),用于分类 AMD、DME 和正常的 OCT 图像。该方法在两个数据集上进行了评估,包括 DUKE 公共数据集和突尼斯私人数据集。在 DUKE 数据集上,Inception_V3 模型和所提出的自定义 CNN 提取的特征的组合实现了最高的 99.53%的准确率。在 DUKE 公共数据集和突尼斯数据集上获得的结果表明,该方法是一种有效的自动视网膜 OCT 图像分类的重要工具。

相似文献

[1]
A new intelligent system based deep learning to detect DME and AMD in OCT images.

Int Ophthalmol. 2024-4-23

[2]
Automatic detection of retinal regions using fully convolutional networks for diagnosis of abnormal maculae in optical coherence tomography images.

J Biomed Opt. 2019-5

[3]
A novel approach for automatic classification of macular degeneration OCT images.

Sci Rep. 2024-8-20

[4]
Fully automated detection of retinal disorders by image-based deep learning.

Graefes Arch Clin Exp Ophthalmol. 2019-3

[5]
Automatic diagnosis of macular diseases from OCT volume based on its two-dimensional feature map and convolutional neural network with attention mechanism.

J Biomed Opt. 2020-9

[6]
Fully automated macular pathology detection in retina optical coherence tomography images using sparse coding and dictionary learning.

J Biomed Opt. 2017-1-1

[7]
Fully Automated Detection and Quantification of Macular Fluid in OCT Using Deep Learning.

Ophthalmology. 2017-12-8

[8]
Optical coherence tomography for age-related macular degeneration and diabetic macular edema: an evidence-based analysis.

Ont Health Technol Assess Ser. 2009

[9]
Classification of age-related macular degeneration using convolutional-neural-network-based transfer learning.

BMC Bioinformatics. 2021-11-8

[10]
UD-MIL: Uncertainty-Driven Deep Multiple Instance Learning for OCT Image Classification.

IEEE J Biomed Health Inform. 2020-12

引用本文的文献

[1]
Residual self-attention vision transformer for detecting acquired vitelliform lesions and age-related macular drusen.

Sci Rep. 2025-5-16

本文引用的文献

[1]
Detecting Macular Disease Based on Optical Coherence Tomography Using a Deep Convolutional Network.

J Clin Med. 2023-1-28

[2]
Classification of Retinal Diseases in Optical Coherence Tomography Images Using Artificial Intelligence and Firefly Algorithm.

Diagnostics (Basel). 2023-1-25

[3]
Deep Learning-Based System for Disease Screening and Pathologic Region Detection From Optical Coherence Tomography Images.

Transl Vis Sci Technol. 2023-1-3

[4]
Automatic Detection of Age-Related Macular Degeneration Based on Deep Learning and Local Outlier Factor Algorithm.

Diagnostics (Basel). 2022-2-18

[5]
Identifying Medical Diagnoses and Treatable Diseases by Image-Based Deep Learning.

Cell. 2018-2-22

[6]
Transfer learning based classification of optical coherence tomography images with diabetic macular edema and dry age-related macular degeneration.

Biomed Opt Express. 2017-1-4

[7]
Machine learning based detection of age-related macular degeneration (AMD) and diabetic macular edema (DME) from optical coherence tomography (OCT) images.

Biomed Opt Express. 2016-11-3

[8]
How does age-related macular degeneration affect real-world visual ability and quality of life? A systematic review.

BMJ Open. 2016-12-2

[9]
Deep learning.

Nature. 2015-5-28

[10]
Costs and Quality of Life in Diabetic Macular Edema: Canadian Burden of Diabetic Macular Edema Observational Study (C-REALITY).

J Ophthalmol. 2014

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索