Laboratory of Biophysics and Medical Technologies, Higher Institute of Medical Technologies of Tunis, University of Tuins El Manar, 1006, Tunis, Tunisia.
Laboratory of Biophysics and Medical Technologies, National Engineering School of Carthage, 2035, Tunis, Tunisia.
Int Ophthalmol. 2024 Apr 23;44(1):191. doi: 10.1007/s10792-024-03115-8.
Optical Coherence Tomography (OCT) is widely recognized as the leading modality for assessing ocular retinal diseases, playing a crucial role in diagnosing retinopathy while maintaining a non-invasive modality. The increasing volume of OCT images underscores the growing importance of automating image analysis. Age-related diabetic Macular Degeneration (AMD) and Diabetic Macular Edema (DME) are the most common cause of visual impairment. Early detection and timely intervention for diabetes-related conditions are essential for preventing optical complications and reducing the risk of blindness. This study introduces a novel Computer-Aided Diagnosis (CAD) system based on a Convolutional Neural Network (CNN) model, aiming to identify and classify OCT retinal images into AMD, DME, and Normal classes. Leveraging CNN efficiency, including feature learning and classification, various CNN, including pre-trained VGG16, VGG19, Inception_V3, a custom from scratch model, BCNN (VGG16) , BCNN (VGG19) , and BCNN (Inception_V3) , are developed for the classification of AMD, DME, and Normal OCT images. The proposed approach has been evaluated on two datasets, including a DUKE public dataset and a Tunisian private dataset. The combination of the Inception_V3 model and the extracted feature from the proposed custom CNN achieved the highest accuracy value of 99.53% in the DUKE dataset. The obtained results on DUKE public and Tunisian datasets demonstrate the proposed approach as a significant tool for efficient and automatic retinal OCT image classification.
光学相干断层扫描(OCT)被广泛认为是评估眼部视网膜疾病的主要方式,在诊断视网膜病变的同时保持非侵入性,起着至关重要的作用。OCT 图像数量的增加突显了自动图像分析的重要性。与年龄相关的糖尿病性黄斑变性(AMD)和糖尿病性黄斑水肿(DME)是视力障碍的最常见原因。早期发现和及时干预糖尿病相关疾病对于预防光学并发症和降低失明风险至关重要。本研究介绍了一种基于卷积神经网络(CNN)模型的新型计算机辅助诊断(CAD)系统,旨在识别和分类 OCT 视网膜图像为 AMD、DME 和正常三类。利用 CNN 的效率,包括特征学习和分类,开发了各种 CNN,包括预训练的 VGG16、VGG19、Inception_V3、从头开始的自定义模型、BCNN(VGG16)、BCNN(VGG19)和 BCNN(Inception_V3),用于分类 AMD、DME 和正常的 OCT 图像。该方法在两个数据集上进行了评估,包括 DUKE 公共数据集和突尼斯私人数据集。在 DUKE 数据集上,Inception_V3 模型和所提出的自定义 CNN 提取的特征的组合实现了最高的 99.53%的准确率。在 DUKE 公共数据集和突尼斯数据集上获得的结果表明,该方法是一种有效的自动视网膜 OCT 图像分类的重要工具。
Int Ophthalmol. 2024-4-23
Graefes Arch Clin Exp Ophthalmol. 2019-3
Ophthalmology. 2017-12-8
Ont Health Technol Assess Ser. 2009
BMC Bioinformatics. 2021-11-8
IEEE J Biomed Health Inform. 2020-12
Transl Vis Sci Technol. 2023-1-3
Diagnostics (Basel). 2022-2-18
Nature. 2015-5-28