Suppr超能文献

用于多机构三维脑肿瘤分割的具有隐私保护的联邦学习

Federated Learning with Privacy Preserving for Multi- Institutional Three-Dimensional Brain Tumor Segmentation.

作者信息

Yahiaoui Mohammed Elbachir, Derdour Makhlouf, Abdulghafor Rawad, Turaev Sherzod, Gasmi Mohamed, Bennour Akram, Aborujilah Abdulaziz, Sarem Mohamed Al

机构信息

Mathematics, Informatics and Systems LAboratory-LAMIS Laboratory, University of Echahid Cheikh Larbi Tebessi, Tebessa 12000, Algeria.

Artificial Intelligence and Autonomous Things Laboratory-LIAOA, University of Oum el Bouaghi, Oum El Bouaghi 04000, Algeria.

出版信息

Diagnostics (Basel). 2024 Dec 23;14(24):2891. doi: 10.3390/diagnostics14242891.

Abstract

BACKGROUND AND OBJECTIVES

Brain tumors are complex diseases that require careful diagnosis and treatment. A minor error in the diagnosis may easily lead to significant consequences. Thus, one must place a premium on accurately identifying brain tumors. However, deep learning (DL) models often face challenges in obtaining sufficient medical imaging data due to legal, privacy, and technical barriers hindering data sharing between institutions. This study aims to implement a federated learning (FL) approach with privacy-preserving techniques (PPTs) directed toward segmenting brain tumor lesions in a distributed and privacy-aware manner.

METHODS

The suggested approach employs a model of 3D U-Net, which is trained using federated learning on the BraTS 2020 dataset. PPTs, such as differential privacy, are included to ensure data confidentiality while managing privacy and heterogeneity challenges with minimal communication overhead. The efficiency of the model is measured in terms of Dice similarity coefficients (DSCs) and 95% Hausdorff distances (HD95) concerning the target areas concerned by tumors, which include the whole tumor (WT), tumor core (TC), and enhancing tumor core (ET).

RESULTS

In the validation phase, the partial federated model achieved DSCs of 86.1%, 83.3%, and 79.8%, corresponding to 95% values of 25.3 mm, 8.61 mm, and 9.16 mm for WT, TC, and ET, respectively. On the final test set, the model demonstrated improved performance, achieving DSCs of 89.85%, 87.55%, and 86.6%, with HD95 values of 22.95 mm, 8.68 mm, and 8.32 mm for WT, TC, and ET, respectively, which indicates the effectiveness of the segmentation approach, and its privacy preservation.

CONCLUSION

This study presents a highly competitive, collaborative federated learning model with PPTs that can successfully segment brain tumor lesions without compromising patient data confidentiality. Future work will improve model generalizability and extend the framework to other medical imaging tasks.

摘要

背景与目的

脑肿瘤是复杂的疾病,需要仔细诊断和治疗。诊断中的一个小错误可能很容易导致严重后果。因此,必须高度重视准确识别脑肿瘤。然而,由于法律、隐私和技术障碍阻碍机构间的数据共享,深度学习(DL)模型在获取足够的医学影像数据时常常面临挑战。本研究旨在实施一种联合学习(FL)方法,并采用隐私保护技术(PPT),以分布式且注重隐私的方式分割脑肿瘤病变。

方法

所建议的方法采用3D U-Net模型,该模型在BraTS 2020数据集上使用联合学习进行训练。纳入了诸如差分隐私等隐私保护技术,以确保数据机密性,同时以最小的通信开销应对隐私和异质性挑战。模型的效率通过与肿瘤相关目标区域(包括整个肿瘤(WT)、肿瘤核心(TC)和强化肿瘤核心(ET))的骰子相似系数(DSC)和95%豪斯多夫距离(HD95)来衡量。

结果

在验证阶段,部分联合模型的DSC分别为86.1%、83.3%和79.8%,对应WT、TC和ET的95%值分别为25.3毫米、8.61毫米和9.16毫米。在最终测试集上,该模型表现出更好的性能,WT、TC和ET的DSC分别为89.85%、87.55%和86.6%,HD95值分别为22.95毫米、8.68毫米和8.32毫米,这表明分割方法的有效性及其隐私保护能力。

结论

本研究提出了一种具有隐私保护技术的极具竞争力的协作式联合学习模型,该模型能够在不损害患者数据机密性的情况下成功分割脑肿瘤病变。未来的工作将提高模型的通用性,并将该框架扩展到其他医学影像任务。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7690/11675895/e17848aa3812/diagnostics-14-02891-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验