Suppr超能文献

用于多源电子健康记录预后预测的隐私保护联邦学习框架

Privacy-Preserving Federated Learning Framework for Multi-Source Electronic Health Records Prognosis Prediction.

作者信息

Zhao Huiya, Sui Dehao, Wang Yasha, Ma Liantao, Wang Ling

机构信息

National Engineering Research Center for Software Engineering, Peking University, Beijing 100871, China.

Key Laboratory of High Confidence Software Technologies, Ministry of Education, Beijing 100871, China.

出版信息

Sensors (Basel). 2025 Apr 9;25(8):2374. doi: 10.3390/s25082374.

Abstract

Secure and privacy-preserving health status representation learning has become a critical challenge in clinical prediction systems. While deep learning models require substantial high-quality data for training, electronic health records are often restricted by strict privacy regulations and institutional policies, particularly during emerging health crises. Traditional approaches to data integration across medical institutions face significant privacy and security challenges, as healthcare providers cannot directly share patient data. This work presents MultiProg, a secure federated learning framework for clinical representation learning. Our approach enables multiple medical institutions to collaborate without exchanging raw patient data, maintaining data locality while improving model performance. The framework employs a multi-channel architecture where institutions share only the low-level feature extraction layers, protecting sensitive patient information. We introduce a feature calibration mechanism that ensures robust performance even with heterogeneous feature sets across different institutions. Through extensive experiments, we demonstrate that the framework successfully enables secure knowledge sharing across institutions without compromising sensitive patient data, achieving enhanced predictive capabilities compared to isolated institutional models. Compared to state-of-the-art methods, our approach achieves the best performance across multiple datasets with statistically significant improvements.

摘要

安全且保护隐私的健康状态表示学习已成为临床预测系统中的一项关键挑战。虽然深度学习模型需要大量高质量数据进行训练,但电子健康记录通常受到严格隐私法规和机构政策的限制,尤其是在新出现的健康危机期间。跨医疗机构进行数据整合的传统方法面临重大的隐私和安全挑战,因为医疗保健提供者无法直接共享患者数据。这项工作提出了MultiProg,一种用于临床表示学习的安全联邦学习框架。我们的方法使多个医疗机构能够在不交换原始患者数据的情况下进行协作,在保持数据局部性的同时提高模型性能。该框架采用多通道架构,机构仅共享低级特征提取层,从而保护敏感的患者信息。我们引入了一种特征校准机制,即使在不同机构的异构特征集情况下也能确保稳健的性能。通过广泛的实验,我们证明该框架成功实现了跨机构的安全知识共享,而不会泄露敏感的患者数据,与孤立的机构模型相比,具有更强的预测能力。与现有最先进的方法相比,我们的方法在多个数据集上取得了最佳性能,且有统计学上的显著改进。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c386/12031511/c24f202afde7/sensors-25-02374-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验