Mohammadi Raziyeh, Ng Samuel Y E, Tan Jayne Y, Ng Adeline S L, Deng Xiao, Choi Xinyi, Heng Dede L, Neo Shermyn, Xu Zheyu, Tay Kay-Yaw, Au Wing-Lok, Tan Eng-King, Tan Louis C S, Steyerberg Ewout W, Greene William, Saffari Seyed Ehsan
Duke-NUS Medical School, National University of Singapore, Singapore 169857, Singapore.
Department of Research, National Neuroscience Institute, Singapore 308433, Singapore.
Biomedicines. 2024 Dec 3;12(12):2758. doi: 10.3390/biomedicines12122758.
: Parkinson's disease (PD) is the second most common neurodegenerative disease, primarily affecting the middle-aged to elderly population. Among its nonmotor symptoms, cognitive decline (CD) is a precursor to dementia and represents a critical target for early risk assessment and diagnosis. Accurate CD prediction is crucial for timely intervention and tailored management of at-risk patients. This study used machine learning (ML) techniques to predict the CD risk over five-year in early-stage PD. : Data from the Early Parkinson's Disease Longitudinal Singapore (2014 to 2018) was used to predict CD defined as a one-unit annual decrease or a one-unit decline in Montreal Cognitive Assessment over two consecutive years. Four ML methods-AutoScore, Random Forest, K-Nearest Neighbors and Neural Network-were applied using baseline demographics, clinical assessments and blood biomarkers. : Variable selection identified key predictors of CD, including education year, diastolic lying blood pressure, diastolic standing blood pressure, systolic lying blood pressure, Hoehn and Yahr scale, body mass index, phosphorylated tau at threonine 181, total tau, Neurofilament light chain and suppression of tumorigenicity 2. Random Forest was the most effective, achieving an AUC of 0.93 (95% CI: 0.89, 0.97), using 10-fold cross-validation. : Here, we demonstrate that ML-based models can identify early-stage PD patients at high risk for CD, supporting targeted interventions and improved PD management.
帕金森病(PD)是第二常见的神经退行性疾病,主要影响中年及老年人群。在其非运动症状中,认知衰退(CD)是痴呆的先兆,是早期风险评估和诊断的关键靶点。准确预测CD对于及时干预和针对高危患者的个性化管理至关重要。本研究使用机器学习(ML)技术预测早期帕金森病患者五年内的CD风险。
来自新加坡早期帕金森病纵向研究(2014年至2018年)的数据用于预测CD,CD定义为每年下降一个单位或连续两年蒙特利尔认知评估下降一个单位。使用基线人口统计学、临床评估和血液生物标志物应用了四种ML方法——自动评分、随机森林、K近邻和神经网络。
变量选择确定了CD的关键预测因素,包括受教育年限、卧位舒张压、立位舒张压、卧位收缩压、霍恩和雅尔分级、体重指数、苏氨酸181位点的磷酸化tau蛋白、总tau蛋白、神经丝轻链和抑癌基因2。使用10倍交叉验证时,随机森林最为有效,曲线下面积(AUC)达到0.93(95%置信区间:0.89,0.97)。
在此,我们证明基于ML的模型可以识别出CD高风险的早期帕金森病患者,支持有针对性的干预并改善帕金森病的管理。