Suppr超能文献

评估用于糖尿病肾病准确诊断的特征选择方法

Evaluating Feature Selection Methods for Accurate Diagnosis of Diabetic Kidney Disease.

作者信息

Maeda-Gutiérrez Valeria, Galván-Tejada Carlos E, Galván-Tejada Jorge I, Cruz Miguel, Celaya-Padilla José M, Gamboa-Rosales Hamurabi, García-Hernández Alejandra, Luna-García Huizilopoztli, Villalba-Condori Klinge Orlando

机构信息

Unidad Académica de Ingeniería Eléctrica, Universidad Autónoma de Zacatecas, Jardín Juárez 147, Centro, Zacatecas 98000, Mexico.

Unidad de Investigación Médica en Bioquímica, Centro Médico Nacional Siglo XXI, Hospital de Especialidades, Instituto Mexicano del Seguro Social, Av. Cuauhtémoc 330, Col. Doctores, Del. Cuauhtémoc, Ciudad de Mexico 06720, Mexico.

出版信息

Biomedicines. 2024 Dec 16;12(12):2858. doi: 10.3390/biomedicines12122858.

Abstract

: The increase in patients with type 2 diabetes, coupled with the development of complications caused by the same disease is an alarming aspect for the health sector. One of the main complications of diabetes is nephropathy, which is also the main cause of kidney failure. Once diagnosed, in Mexican patients the kidney damage is already highly compromised, which is why acting preventively is extremely important. The aim of this research is to compare distinct methodologies of feature selection to identify discriminant risk factors that may be beneficial for early treatment, and prevention. : This study focused on evaluating a Mexican dataset collected from 22 patients containing 32 attributes. To reduce the dimensionality and choose the most important variables, four feature selection algorithms: Univariate, Boruta, Galgo, and Elastic net were implemented. After selecting suitable features detected by the methodologies, they are included in the random forest classifier, obtaining four models. : Galgo with Random Forest achieved the best performance with only three predictors, "creatinine", "urea", and "lipids treatment". The model displayed a moderate classification performance with an area under the curve of 0.80 (±0.3535 SD), a sensitivity of 0.909, and specificity of 0.818. : It is demonstrated that the proposed methodology has the potential to facilitate the prompt identification of nephropathy and non-nephropathy patients, and thereby could be used in the clinical area as a preliminary computer-aided diagnosis tool.

摘要

2型糖尿病患者数量的增加,以及由该疾病引发的并发症的发展,对卫生部门来说是一个令人担忧的问题。糖尿病的主要并发症之一是肾病,它也是肾衰竭的主要原因。一旦确诊,墨西哥患者的肾脏损害已经非常严重,这就是为什么采取预防措施极其重要的原因。本研究的目的是比较不同的特征选择方法,以识别可能对早期治疗和预防有益的判别性风险因素。

本研究专注于评估从22名患者收集的包含32个属性的墨西哥数据集。为了降低维度并选择最重要的变量,实施了四种特征选择算法:单变量算法、Boruta算法、Galgo算法和弹性网络算法。在选择了这些方法检测到的合适特征后,将它们纳入随机森林分类器,得到四个模型。

Galgo算法与随机森林算法相结合,仅使用“肌酐”、“尿素”和“脂质治疗”这三个预测变量就取得了最佳性能。该模型显示出中等的分类性能,曲线下面积为0.80(±0.3535标准差),灵敏度为0.909,特异性为0.818。

结果表明,所提出的方法有潜力促进对肾病和非肾病患者的快速识别,从而可在临床领域用作初步的计算机辅助诊断工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2caf/11674021/f8f5917079fe/biomedicines-12-02858-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验