Suppr超能文献

从字节到肾单位:人工智能在糖尿病肾病中的征程。

From bytes to nephrons: AI's journey in diabetic kidney disease.

作者信息

Basuli Debargha, Kavcar Akil, Roy Sasmit

机构信息

Department of Nephrology & Hypertension, Brody School of Medicine, East Carolina University, 2355 W Arlington Blvd, Greenville, NC, 27834, USA.

Department of Internal Medicine, Brody School of Medicine, East Carolina University, Greenville, NC, USA.

出版信息

J Nephrol. 2025 Jan;38(1):25-35. doi: 10.1007/s40620-024-02050-2. Epub 2024 Aug 12.

Abstract

Diabetic kidney disease (DKD) is a significant complication of type 2 diabetes, posing a global health risk. Detecting and predicting diabetic kidney disease at an early stage is crucial for timely interventions and improved patient outcomes. Artificial intelligence (AI) has demonstrated promise in healthcare, and several tools have recently been developed that utilize Machine Learning with clinical data to detect and predict DKD. This review aims to explore the current landscape of AI and machine learning applications in DKD, specifically examining existing literature on risk scores and machine learning approaches for predicting DKD development. A literature search was conducted using Medline (PubMed), Google Scholar, and Scopus databases until July 2023. Relevant keywords were used to extract studies that described the role of AI in DKD. The review revealed that AI and machine learning have been successfully used to predict DKD progression, outperforming traditional risk score models. Artificial intelligence-driven research for DKD extends beyond prediction models, offering opportunities for integrating genetic and epigenetic data, advancing understanding of the disease's molecular basis, personalizing treatment strategies, and fostering the development of novel drugs. However, challenges remain, including the requirement for large datasets and the lack of standardization in AI-driven tools for DKD. Artificial intelligence and machine learning have the potential to revolutionize the management and care of DKD patients, surpassing the limitations of traditional methods reliant on existing knowledge. Future research should address the challenges associated with AI and machine learning in DKD and focus on developing AI-driven tools for clinical practice.

摘要

糖尿病肾病(DKD)是2型糖尿病的一种重要并发症,对全球健康构成威胁。早期检测和预测糖尿病肾病对于及时干预和改善患者预后至关重要。人工智能(AI)在医疗保健领域已展现出前景,最近已开发出多种利用机器学习结合临床数据来检测和预测DKD的工具。本综述旨在探讨人工智能和机器学习在DKD中的应用现状,特别考察关于预测DKD发生的风险评分和机器学习方法的现有文献。使用Medline(PubMed)、谷歌学术和Scopus数据库进行了文献检索,截至2023年7月。使用相关关键词提取描述人工智能在DKD中作用的研究。该综述表明,人工智能和机器学习已成功用于预测DKD的进展,其表现优于传统风险评分模型。针对DKD的人工智能驱动研究不仅限于预测模型,还为整合遗传和表观遗传数据、加深对该疾病分子基础的理解、个性化治疗策略以及促进新药开发提供了机会。然而,挑战依然存在,包括对大型数据集的需求以及用于DKD的人工智能驱动工具缺乏标准化。人工智能和机器学习有潜力彻底改变DKD患者的管理和护理方式,超越依赖现有知识的传统方法的局限性。未来的研究应解决与DKD中人工智能和机器学习相关的挑战,并专注于开发用于临床实践的人工智能驱动工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab8d/11903625/d51b726e311d/40620_2024_2050_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验