Suppr超能文献

利用机器学习的角膜诊断进展。

Advances in Corneal Diagnostics Using Machine Learning.

作者信息

Al-Sharify Noor T, Yussof Salman, Ghaeb Nebras H, Al-Sharify Zainab T, Naser Husam Yahya, Ahmed Sura M, See Ong Hang, Weng Leong Yeng

机构信息

Department of Electrical & Electronic Engineering, College of Engineering, Universiti Tenaga Nasional, Kajang 43000, Malaysia.

Medical Instrumentation Engineering Department, Al-Esraa University College, Baghdad 10069, Iraq.

出版信息

Bioengineering (Basel). 2024 Nov 27;11(12):1198. doi: 10.3390/bioengineering11121198.

Abstract

This paper provides comprehensive insights into the cornea and its diseases, with a particular focus on keratoconus. This paper explores the cornea's function in maintaining ocular health, detailing its anatomy, pathological conditions, and the latest developments in diagnostic techniques. Keratoconus is discussed extensively, covering its subtypes, etiology, clinical manifestations, and the application of the Q-value for quantification. Several diagnostic techniques, such as corneal topography, are crucial points of discussion. This paper also examines the use of machine learning models, specifically Decision Tree and Nearest Neighbor Analysis, which enhance the accuracy of diagnosing based on topographical corneal parameters from corneal topography. These models provide valuable insights into disease progression and aid in clinical decision making. Integrating these technologies in medical research opens promising avenues for enhanced disease detection. Our findings demonstrate the effectiveness of Decision Tree and Nearest Neighbor Analysis in classifying and predicting conditions based on corneal parameters. The Decision Tree achieved classification accuracy of 62% for training and 65.7% for testing, while Nearest Neighbor Analysis yielded 65.4% for training and 62.6% for holdout samples. These models offer valuable insights into the progression and severity of keratoconus, aiding clinicians in treatment and management decisions.

摘要

本文对角膜及其疾病进行了全面的阐述,尤其聚焦于圆锥角膜。本文探讨了角膜在维持眼部健康中的作用,详细介绍了其解剖结构、病理状况以及诊断技术的最新进展。文中广泛讨论了圆锥角膜,涵盖其亚型、病因、临床表现以及Q值在量化方面的应用。几种诊断技术,如角膜地形图,是讨论的重点。本文还研究了机器学习模型的应用,特别是决策树和最近邻分析,这些模型基于角膜地形图的地形参数提高了诊断的准确性。这些模型为疾病进展提供了有价值的见解,并有助于临床决策。将这些技术整合到医学研究中为加强疾病检测开辟了广阔的前景。我们的研究结果证明了决策树和最近邻分析在基于角膜参数对病情进行分类和预测方面的有效性。决策树在训练时的分类准确率为62%,测试时为65.7%,而最近邻分析在训练时的准确率为65.4%,在留出样本测试时为62.6%。这些模型为圆锥角膜的进展和严重程度提供了有价值的见解,有助于临床医生进行治疗和管理决策。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dd55/11726986/0bf0bb560592/bioengineering-11-01198-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验