文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Recent Breakthroughs in PET-CT Multimodality Imaging: Innovations and Clinical Impact.

作者信息

Hussain Dildar, Abbas Naseem, Khan Jawad

机构信息

Department of Artificial Intelligence and Data Science, Sejong University, Seoul 05006, Republic of Korea.

Department of Mechanical Engineering, Sejong University, Seoul 05006, Republic of Korea.

出版信息

Bioengineering (Basel). 2024 Nov 30;11(12):1213. doi: 10.3390/bioengineering11121213.


DOI:10.3390/bioengineering11121213
PMID:39768032
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11672880/
Abstract

This review presents a detailed examination of the most recent advancements in positron emission tomography-computed tomography (PET-CT) multimodal imaging over the past five years. The fusion of PET and CT technologies has revolutionized medical imaging, offering unprecedented insights into both anatomical structure and functional processes. The analysis delves into key technological innovations, including advancements in image reconstruction, data-driven gating, and time-of-flight capabilities, highlighting their impact on enhancing diagnostic accuracy and clinical outcomes. Illustrative case studies underscore the transformative role of PET-CT in lesion detection, disease characterization, and treatment response evaluation. Additionally, the review explores future prospects and challenges in PET-CT, advocating for the integration and evaluation of emerging technologies to improve patient care. This comprehensive synthesis aims to equip healthcare professionals, researchers, and industry stakeholders with the knowledge and tools necessary to navigate the evolving landscape of PET-CT multimodal imaging.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/79f9/11672880/f8a6acfc9c72/bioengineering-11-01213-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/79f9/11672880/27a8ed581b5a/bioengineering-11-01213-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/79f9/11672880/2b1ff940c8df/bioengineering-11-01213-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/79f9/11672880/91aa3c2fe5ea/bioengineering-11-01213-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/79f9/11672880/2013334b020b/bioengineering-11-01213-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/79f9/11672880/c2846eb6f416/bioengineering-11-01213-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/79f9/11672880/f8a6acfc9c72/bioengineering-11-01213-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/79f9/11672880/27a8ed581b5a/bioengineering-11-01213-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/79f9/11672880/2b1ff940c8df/bioengineering-11-01213-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/79f9/11672880/91aa3c2fe5ea/bioengineering-11-01213-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/79f9/11672880/2013334b020b/bioengineering-11-01213-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/79f9/11672880/c2846eb6f416/bioengineering-11-01213-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/79f9/11672880/f8a6acfc9c72/bioengineering-11-01213-g006.jpg

相似文献

[1]
Recent Breakthroughs in PET-CT Multimodality Imaging: Innovations and Clinical Impact.

Bioengineering (Basel). 2024-11-30

[2]
Clinical Applications and Advancements of Positron Emission Tomography/Computed Tomography in Cardio-Oncology: A Comprehensive Literature Review and Emerging Perspectives.

Curr Oncol Rep. 2024-11

[3]
Extracting value from total-body PET/CT image data - the emerging role of artificial intelligence.

Cancer Imaging. 2024-4-11

[4]
Deep learning techniques in PET/CT imaging: A comprehensive review from sinogram to image space.

Comput Methods Programs Biomed. 2024-1

[5]
More advantages in detecting bone and soft tissue metastases from prostate cancer using F-PSMA PET/CT.

Hell J Nucl Med. 2019

[6]
Nanomaterial-Based Molecular Imaging in Cancer: Advances in Simulation and AI Integration.

Biomolecules. 2025-3-20

[7]
Technological advancements in glucose monitoring and artificial pancreas systems for shaping diabetes care.

Curr Med Res Opin. 2024-12

[8]
What's new in pediatric musculoskeletal imaging.

J Child Orthop. 2025-3-12

[9]
Advances in PET/CT Technology: An Update.

Semin Nucl Med. 2022-5

[10]
Multimodality imaging techniques.

Contrast Media Mol Imaging. 2010

引用本文的文献

[1]
Molecular imaging using (nano)probes: cutting-edge developments and clinical challenges in diagnostics.

RSC Adv. 2025-7-14

本文引用的文献

[1]
Unified Noise-aware Network for Low-count PET Denoising with Varying Count Levels.

IEEE Trans Radiat Plasma Med Sci. 2024-4

[2]
Exploring the Impact of Noise and Image Quality on Deep Learning Performance in DXA Images.

Diagnostics (Basel). 2024-6-22

[3]
Revolutionizing tumor detection and classification in multimodality imaging based on deep learning approaches: Methods, applications and limitations.

J Xray Sci Technol. 2024

[4]
Tau pathology is associated with synaptic density and longitudinal synaptic loss in Alzheimer's disease.

Mol Psychiatry. 2024-9

[5]
Integrating Artificial Intelligence and PET Imaging for Drug Discovery: A Paradigm Shift in Immunotherapy.

Pharmaceuticals (Basel). 2024-2-6

[6]
Feasibility of noise-reduction reconstruction technology based on non-local-mean principle in SiPM-PET/CT.

Phys Med. 2024-3

[7]
Diagnostic performance of artificial intelligence-assisted PET imaging for Parkinson's disease: a systematic review and meta-analysis.

NPJ Digit Med. 2024-1-22

[8]
Scintillation and cherenkov photon counting detectors with analog silicon photomultipliers for TOF-PET.

Phys Med Biol. 2024-2-13

[9]
Exploring Non-Toxic Lower Dimensional Perovskites for Next-Generation X-Ray Detectors.

Small. 2024-6

[10]
Reducing pediatric total-body PET/CT imaging scan time with multimodal artificial intelligence technology.

EJNMMI Phys. 2024-1-2

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索