Yousefi Farbod, Foster Lauren Ann, Selim Omar A, Zhao Chunfeng
Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA.
Atlanta Veterans Affairs Medical Center, Emory University School of Medicine, Atlanta, GA 30307, USA.
Bioengineering (Basel). 2024 Dec 9;11(12):1245. doi: 10.3390/bioengineering11121245.
Muscle stem cells (MuSCs) are essential for skeletal muscle regeneration, influenced by a complex interplay of mechanical, biochemical, and molecular cues. Properties of the extracellular matrix (ECM) such as stiffness and alignment guide stem cell fate through mechanosensitive pathways, where forces like shear stress translate into biochemical signals, affecting cell behavior. Aging introduces senescence which disrupts the MuSC niche, leading to reduced regenerative capacity via epigenetic alterations and metabolic shifts. Transplantation further challenges MuSC viability, often resulting in fibrosis driven by dysregulated fibro-adipogenic progenitors (FAPs). Addressing these issues, scaffold designs integrated with pharmacotherapy emulate ECM environments, providing cues that enhance graft functionality and endurance. These scaffolds facilitate the synergy between mechanotransduction and intracellular signaling, optimizing MuSC proliferation and differentiation. Innovations utilizing human pluripotent stem cell-derived myogenic progenitors and exosome-mediated delivery exploit bioactive properties for targeted repair. Additionally, 3D-printed and electrospun scaffolds with adjustable biomechanical traits tackle scalability in treating volumetric muscle loss. Advanced techniques like single-cell RNA sequencing and high-resolution imaging unravel muscle repair mechanisms, offering precise mapping of cellular interactions. Collectively, this interdisciplinary approach fortifies tissue graft durability and MuSC maintenance, propelling therapeutic strategies for muscle injuries and degenerative diseases.
肌肉干细胞(MuSCs)对骨骼肌再生至关重要,受机械、生化和分子信号的复杂相互作用影响。细胞外基质(ECM)的特性,如硬度和排列方向,通过机械敏感途径引导干细胞命运,在这些途径中,诸如剪切应力等力转化为生化信号,影响细胞行为。衰老会引发细胞衰老,破坏MuSC微环境,通过表观遗传改变和代谢转变导致再生能力下降。移植进一步挑战了MuSC的生存能力,常常导致由失调的纤维脂肪生成祖细胞(FAPs)驱动的纤维化。为解决这些问题,与药物治疗相结合的支架设计模拟ECM环境,提供增强移植物功能和耐久性的信号。这些支架促进机械转导和细胞内信号传导之间的协同作用,优化MuSC的增殖和分化。利用人类多能干细胞衍生的肌源性祖细胞和外泌体介导的递送的创新技术利用生物活性特性进行靶向修复。此外,具有可调节生物力学特性的3D打印和电纺支架解决了治疗大面积肌肉损失时的可扩展性问题。单细胞RNA测序和高分辨率成像等先进技术揭示了肌肉修复机制,提供了细胞相互作用的精确图谱。总的来说,这种跨学科方法增强了组织移植物的耐久性和MuSC的维持能力,推动了肌肉损伤和退行性疾病的治疗策略。