Jeong Woosik, Baek Chang-Heon, Lee Dong-Yeong, Song Sang-Youn, Na Jae-Boem, Hidayat Mohamad Soleh, Kim Geonwoo, Kim Dong-Hee
Department of Bio-Industrial Machinery Engineering, Gyeongsang National University, Jinju 52828, Republic of Korea.
Department of Orthopaedic Surgery, Institute of Medical Science, Gyeongsang National University College of Medicine and Gyeongsang National University Hospital, Jinju 52727, Republic of Korea.
Bioengineering (Basel). 2024 Dec 13;11(12):1264. doi: 10.3390/bioengineering11121264.
Metastatic spine cancer can cause pain and neurological issues, making it challenging to distinguish from spinal compression fractures using magnetic resonance imaging (MRI). To improve diagnostic accuracy, this study developed artificial intelligence (AI) models to differentiate between metastatic spine cancer and spinal compression fractures in MRI images. MRI data from Gyeongsang National University Hospital, collected from January 2019 to April 2022, were processed using Otsu's binarization and Canny edge detection algorithms. Using these preprocessed datasets, convolutional neural network (CNN) and support vector machine (SVM) models were built. The T1-weighted image-based CNN model demonstrated high sensitivity (1.00) and accuracy (0.98) in identifying metastatic spine cancer, particularly with data processed by Otsu's binarization and Canny edge detection, achieving exceptional performance in detecting cancerous cases. This approach highlights the potential of preprocessed MRI data for AI-assisted diagnosis, supporting clinical applications in distinguishing metastatic spine cancer from spinal compression fractures.
转移性脊柱癌可引起疼痛和神经问题,这使得使用磁共振成像(MRI)将其与脊柱压缩性骨折区分开来具有挑战性。为了提高诊断准确性,本研究开发了人工智能(AI)模型,以在MRI图像中区分转移性脊柱癌和脊柱压缩性骨折。对庆尚国立大学医院2019年1月至2022年4月收集的MRI数据,使用大津法二值化和Canny边缘检测算法进行处理。利用这些预处理数据集,构建了卷积神经网络(CNN)和支持向量机(SVM)模型。基于T1加权图像的CNN模型在识别转移性脊柱癌方面表现出高灵敏度(1.00)和准确率(0.98),特别是对经大津法二值化和Canny边缘检测处理的数据,在检测癌症病例方面表现出色。这种方法突出了预处理MRI数据在人工智能辅助诊断中的潜力,为区分转移性脊柱癌和脊柱压缩性骨折的临床应用提供了支持。