Suppr超能文献

深度学习在常规 MRI 骨病变分类中的应用

Deep Learning for Classification of Bone Lesions on Routine MRI.

机构信息

Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA; Perelman School of Medicine at University of Pennsylvania, Philadelphia, PA, 19104, USA.

Department of Radiology, Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China.

出版信息

EBioMedicine. 2021 Jun;68:103402. doi: 10.1016/j.ebiom.2021.103402. Epub 2021 Jun 5.

Abstract

BACKGROUND

Radiologists have difficulty distinguishing benign from malignant bone lesions because these lesions may have similar imaging appearances. The purpose of this study was to develop a deep learning algorithm that can differentiate benign and malignant bone lesions using routine magnetic resonance imaging (MRI) and patient demographics.

METHODS

1,060 histologically confirmed bone lesions with T1- and T2-weighted pre-operative MRI were retrospectively identified and included, with lesions from 4 institutions used for model development and internal validation, and data from a fifth institution used for external validation. Image-based models were generated using the EfficientNet-B0 architecture and a logistic regression model was trained using patient age, sex, and lesion location. A voting ensemble was created as the final model. The performance of the model was compared to classification performance by radiology experts.

FINDINGS

The cohort had a mean age of 30±23 years and was 58.3% male, with 582 benign lesions and 478 malignant. Compared to a contrived expert committee result, the ensemble deep learning model achieved (ensemble vs. experts): similar accuracy (0·76 vs. 0·73, p=0·7), sensitivity (0·79 vs. 0·81, p=1·0) and specificity (0·75 vs. 0·66, p=0·48), with a ROC AUC of 0·82. On external testing, the model achieved ROC AUC of 0·79.

INTERPRETATION

Deep learning can be used to distinguish benign and malignant bone lesions on par with experts. These findings could aid in the development of computer-aided diagnostic tools to reduce unnecessary referrals to specialized centers from community clinics and limit unnecessary biopsies.

FUNDING

This work was funded by a Radiological Society of North America Research Medical Student Grant (#RMS2013) and supported by the Amazon Web Services Diagnostic Development Initiative.

摘要

背景

放射科医生很难区分良性和恶性骨病变,因为这些病变的影像学表现可能相似。本研究的目的是开发一种深度学习算法,利用常规磁共振成像(MRI)和患者人口统计学数据来区分良性和恶性骨病变。

方法

回顾性确定了 1060 例经组织学证实的术前 T1 和 T2 加权 MRI 骨病变,并将其纳入研究,其中 4 个机构的病变用于模型开发和内部验证,第 5 个机构的数据用于外部验证。使用 EfficientNet-B0 架构生成基于图像的模型,并使用患者年龄、性别和病变部位训练逻辑回归模型。作为最终模型创建投票集成。将模型的性能与放射科专家的分类性能进行比较。

结果

该队列的平均年龄为 30±23 岁,男性占 58.3%,良性病变 582 例,恶性病变 478 例。与人为专家委员会结果相比,集成深度学习模型取得了(集成与专家):相似的准确性(0.76 对 0.73,p=0.7)、敏感性(0.79 对 0.81,p=1.0)和特异性(0.75 对 0.66,p=0.48),ROC AUC 为 0.82。在外部测试中,该模型的 ROC AUC 为 0.79。

解释

深度学习可以与专家一样用于区分良性和恶性骨病变。这些发现可以帮助开发计算机辅助诊断工具,以减少从社区诊所向专门中心的不必要转诊,并限制不必要的活检。

资金

这项工作得到了北美放射学会研究医学学生奖学金(#RMS2013)的资助,并得到了亚马逊网络服务诊断开发倡议的支持。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1dc0/8190437/d80f952e494d/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验