Tirasattayapitak Sittipath, Ratanatharathorn Cholatid, Thotsiri Sansanee, Sutharattanapong Napun, Wiwattanathum Punlop, Arpornsujaritkun Nuttapon, Sirisopana Kun, Worawichawong Suchin, Rostaing Lionel, Kantachuvesiri Surasak
Division of Nephrology, Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Ratchathewi, Bangkok 10400, Thailand.
Excellence Center for Organ Transplantation, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Ratchathewi, Bangkok 10400, Thailand.
J Clin Med. 2024 Dec 10;13(24):7502. doi: 10.3390/jcm13247502.
Given the significant impact of delayed graft function (DGF) on transplant outcomes, the aim of this study was to develop and validate machine learning (ML) models capable of predicting the risk of DGF in deceased-donor kidney transplantation (DDKT). This retrospective cohort study was conducted using clinical and histopathological data collected between 2018 and 2022 at Ramathibodi Hospital from DDKT donors, recipients, and post-implantation time-zero kidney biopsy samples to develop predictive models. The performance of three ML models (neural network, random forest, and extreme gradient boosting [XGBoost]) and traditional logistic regression on an independent test data set was evaluated using the area under the receiver operating characteristic curve (AUROC) and Brier score calibration. Among 354 DDKT recipients, 64 (18.1%) experienced DGF. The key contributing factors included a donor body mass index > 23 kg/m, donor diabetes mellitus, a prolonged cold ischemia time, a male recipient, and an interstitial fibrosis/tubular atrophy score of 2-3 in the time-zero kidney biopsy sample. The random forest model had a specificity of 99.96% and an AUROC of 0.9323, the neural network model had a specificity of 97.43% and an AUROC of 0.844, and the XGBoost model had a specificity of 99.81% and an AUROC of 0.989. A traditional statistical model had a specificity of 84.4% and an AUROC of 0.769. Predictive models, especially XGBoost models, have potential as tools for assessing DGF risk post-DDKT, guiding acceptance decisions, and avoiding risky biopsy, and they may be crucial in resource-limited settings.
鉴于移植肾功能延迟(DGF)对移植结果有重大影响,本研究旨在开发并验证能够预测 deceased-donor 肾移植(DDKT)中 DGF 风险的机器学习(ML)模型。本回顾性队列研究使用了 2018 年至 2022 年期间在拉玛蒂博迪医院收集的临床和组织病理学数据,这些数据来自 DDKT 的供体、受体以及植入后零时肾活检样本,以开发预测模型。使用受试者操作特征曲线下面积(AUROC)和 Brier 评分校准,在独立测试数据集上评估了三种 ML 模型(神经网络、随机森林和极端梯度提升[XGBoost])以及传统逻辑回归的性能。在 354 例 DDKT 受者中,64 例(18.1%)发生了 DGF。关键促成因素包括供体体重指数>23 kg/m²、供体糖尿病、冷缺血时间延长、男性受者以及零时肾活检样本中的间质纤维化/肾小管萎缩评分为 2 - 3。随机森林模型的特异性为 99.96%,AUROC 为 0.9323;神经网络模型的特异性为 97.43%,AUROC 为 0.844;XGBoost 模型的特异性为 99.81%,AUROC 为 0.989。传统统计模型的特异性为 84.4%,AUROC 为 0.769。预测模型,尤其是 XGBoost 模型,有潜力作为评估 DDKT 后 DGF 风险、指导接受决策以及避免有风险活检的工具,并且在资源有限的环境中可能至关重要。