Suppr超能文献

自动化批量机器学习模型生成在预测肾移植延迟性移植肾功能方面表现出与经典回归模型相当的性能。

Automated En Masse Machine Learning Model Generation Shows Comparable Performance as Classic Regression Models for Predicting Delayed Graft Function in Renal Allografts.

作者信息

Jen Kuang-Yu, Albahra Samer, Yen Felicia, Sageshima Junichiro, Chen Ling-Xin, Tran Nam, Rashidi Hooman H

机构信息

Department of Pathology and Laboratory Medicine, University of California, Davis School of Medicine, Sacramento, CA.

Division of Transplant Surgery, Department of Surgery, University of California, Davis School of Medicine, Sacramento, CA.

出版信息

Transplantation. 2021 Dec 1;105(12):2646-2654. doi: 10.1097/TP.0000000000003640.

Abstract

BACKGROUND

Several groups have previously developed logistic regression models for predicting delayed graft function (DGF). In this study, we used an automated machine learning (ML) modeling pipeline to generate and optimize DGF prediction models en masse.

METHODS

Deceased donor renal transplants at our institution from 2010 to 2018 were included. Input data consisted of 21 donor features from United Network for Organ Sharing. A training set composed of ~50%/50% split in DGF-positive and DGF-negative cases was used to generate 400 869 models. Each model was based on 1 of 7 ML algorithms (gradient boosting machine, k-nearest neighbor, logistic regression, neural network, naive Bayes, random forest, support vector machine) with various combinations of feature sets and hyperparameter values. Performance of each model was based on a separate secondary test dataset and assessed by common statistical metrics.

RESULTS

The best performing models were based on neural network algorithms, with the highest area under the receiver operating characteristic curve of 0.7595. This model used 10 out of the original 21 donor features, including age, height, weight, ethnicity, serum creatinine, blood urea nitrogen, hypertension history, donation after cardiac death status, cause of death, and cold ischemia time. With the same donor data, the highest area under the receiver operating characteristic curve for logistic regression models was 0.7484, using all donor features.

CONCLUSIONS

Our automated en masse ML modeling approach was able to rapidly generate ML models for DGF prediction. The performance of the ML models was comparable with classic logistic regression models.

摘要

背景

此前已有多个团队开发了用于预测移植肾功能延迟恢复(DGF)的逻辑回归模型。在本研究中,我们使用了自动化机器学习(ML)建模流程来大规模生成和优化DGF预测模型。

方法

纳入了2010年至2018年在我们机构进行的 deceased donor 肾移植。输入数据包括来自器官共享联合网络的21个供体特征。一个由DGF阳性和DGF阴性病例按约50%/50%比例划分组成的训练集用于生成400 869个模型。每个模型基于7种ML算法(梯度提升机、k近邻、逻辑回归、神经网络、朴素贝叶斯、随机森林、支持向量机)中的一种,并结合了不同的特征集和超参数值组合。每个模型的性能基于一个单独的二次测试数据集,并通过常见统计指标进行评估。

结果

表现最佳的模型基于神经网络算法,受试者操作特征曲线下面积最高为0.7595。该模型使用了原始21个供体特征中的10个,包括年龄、身高、体重、种族、血清肌酐、血尿素氮、高血压病史、心脏死亡后捐赠状态、死亡原因和冷缺血时间。对于逻辑回归模型,使用相同的供体数据,在所有供体特征下受试者操作特征曲线下面积最高为0.7484。

结论

我们的自动化大规模ML建模方法能够快速生成用于DGF预测的ML模型。ML模型的性能与经典逻辑回归模型相当。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验