Suppr超能文献

An alternate method for estimating efferent arteriolar plasma colloid osmotic pressure.

作者信息

Wolfert A I, Laveri L A, Oken D E

出版信息

Am J Physiol. 1985 Mar;248(3 Pt 2):F444-8. doi: 10.1152/ajprenal.1985.248.3.F444.

Abstract

The colloid osmotic pressure (COP) of efferent arteriolar plasma in glomerular dynamic studies generally is estimated from the measured protein concentration (CE) while the nephron filtration fraction (SNFF) is derived from CE and the systemic plasma protein concentration (CA) according to the equation SNFF = (1 - CA/CE). Estimates of both SNFF and COPE are quite sensitive to small errors in protein measurement, however, with a putative coefficient of variation of +/- 5% in protein measurement at a typical SNFF of 0.33, for example, providing an uncertainty (i.e., +/- SD) of +/- 14% in the SNFF estimate and +/- 2.4 mmHg in the estimated COPE value. In this study, we evaluated in vitro the precision with which the COP of plasma samples can be estimated after ultrafiltration by coupling direct oncometry of native plasma with isotopically measured filtration fractions derived employing nanoliter and microliter volumes and applying a modification of the equation of Ladegaard-Pedersen (Scand. J. Clin. Lab. Invest. 23: 153-158, 1969). The measured and estimated oncotic pressures were then compared. The mean differences between theoretic and measured COP values at filtration fractions of less than 0.1, 0.1-0.2, 0.2-0.3 and greater were: -0.4 +/- 0.8 (SE) (n = 22); 1.8 +/- 1.1; 3.9 +/- 1.0; and 6.0 +/- 1.7%, respectively. It is concluded that the coupling of direct oncometric measurement of arterial plasma colloid osmotic pressure with isotopically determined filtration fractions provides a satisfactory estimate of COPE that is suitable for studies of glomerular dynamics.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验