文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

纳米银-生物聚合物-二氧化硅复合材料:制备、结构与吸附分析及抗菌性能评估

Nanosilver-Biopolymer-Silica Composites: Preparation, and Structural and Adsorption Analysis with Evaluation of Antimicrobial Properties.

作者信息

Blachnio Magdalena, Zienkiewicz-Strzalka Malgorzata, Kutkowska Jolanta, Derylo-Marczewska Anna

机构信息

Department of Physical Chemistry, Institute of Chemical Sciences, Maria Curie-Sklodowska University, Maria Curie-Sklodowska Square 3, 20-031 Lublin, Poland.

Department of Genetics and Microbiology, Institute of Biological Sciences, Maria Curie-Sklodowska University, 19 Akademicka Street, 20-033 Lublin, Poland.

出版信息

Int J Mol Sci. 2024 Dec 18;25(24):13548. doi: 10.3390/ijms252413548.


DOI:10.3390/ijms252413548
PMID:39769310
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11679571/
Abstract

In this article, we report on the research on the synthesis of composites based on a porous, highly ordered silica material modified by a metallic nanophase and chitosan biofilm. Due to the ordered pore system of the SBA-15 silica, this material proved to be a good carrier for both the biologically active nanophase (highly dispersed silver nanoparticles, AgNPs) and the adsorption active phase (chitosan). The antimicrobial susceptibility was determined against Gram-positive ATCC 25923, Gram-negative bacterial strains ( ATCC 25922, ATCC 700603, and ATCC 27853), and yeast ATCC 90028. The zones of microbial growth inhibition correlated with the content of silver nanoparticles deposited in the composites and were the largest for (14-21 mm) and (12-17 mm). The suitability of the composites for the purification of water and wastewater from anionic pollutants was evaluated based on kinetic and equilibrium adsorption studies for the dye Acid Red 88. The composite with the highest amount of the chitosan component showed the greatest adsorption capacity (a) of 0.57 mmol/g and the most effective kinetics with a rate constant (log k) and half-time (t) of -0.21 and 1.62 min, respectively. Due to their great practical importance, AgNP-chitosan-silica composites can aspire to be classified as functional materials combining the environmental problem with microbiological activity.

摘要

在本文中,我们报告了基于由金属纳米相和壳聚糖生物膜改性的多孔、高度有序二氧化硅材料的复合材料合成研究。由于SBA - 15二氧化硅的有序孔系统,这种材料被证明是生物活性纳米相(高度分散的银纳米颗粒,AgNPs)和吸附活性相(壳聚糖)的良好载体。针对革兰氏阳性菌ATCC 25923、革兰氏阴性菌菌株(ATCC 25922、ATCC 700603和ATCC 27853)以及酵母ATCC 90028测定了抗菌敏感性。微生物生长抑制区与复合材料中沉积的银纳米颗粒含量相关,对于(14 - 21毫米)和(12 - 17毫米)来说最大。基于对染料酸性红88的动力学和平衡吸附研究,评估了复合材料对阴离子污染物净化水和废水的适用性。壳聚糖成分含量最高的复合材料表现出最大吸附容量(a)为0.57 mmol/g以及最有效的动力学,速率常数(log k)和半衰期(t)分别为 - 0.21和1.62分钟。由于其重大的实际重要性,AgNP - 壳聚糖 - 二氧化硅复合材料有望被归类为结合环境问题与微生物活性的功能材料。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a8cf/11679571/f662b6f52ff3/ijms-25-13548-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a8cf/11679571/9d396108bcac/ijms-25-13548-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a8cf/11679571/673fc40ff1ce/ijms-25-13548-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a8cf/11679571/426df8ddb079/ijms-25-13548-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a8cf/11679571/ad8860389af4/ijms-25-13548-g004a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a8cf/11679571/ac2d79dece0a/ijms-25-13548-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a8cf/11679571/d34e24c643c4/ijms-25-13548-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a8cf/11679571/af3379be2871/ijms-25-13548-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a8cf/11679571/94f3f181a91e/ijms-25-13548-g008a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a8cf/11679571/e04536ea3f09/ijms-25-13548-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a8cf/11679571/ac4c65ad14d7/ijms-25-13548-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a8cf/11679571/f0487f826348/ijms-25-13548-g011a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a8cf/11679571/47e52dc94221/ijms-25-13548-g012a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a8cf/11679571/42a1ae4e5781/ijms-25-13548-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a8cf/11679571/7ceea90a1494/ijms-25-13548-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a8cf/11679571/f51bfe89cc43/ijms-25-13548-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a8cf/11679571/f662b6f52ff3/ijms-25-13548-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a8cf/11679571/9d396108bcac/ijms-25-13548-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a8cf/11679571/673fc40ff1ce/ijms-25-13548-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a8cf/11679571/426df8ddb079/ijms-25-13548-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a8cf/11679571/ad8860389af4/ijms-25-13548-g004a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a8cf/11679571/ac2d79dece0a/ijms-25-13548-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a8cf/11679571/d34e24c643c4/ijms-25-13548-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a8cf/11679571/af3379be2871/ijms-25-13548-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a8cf/11679571/94f3f181a91e/ijms-25-13548-g008a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a8cf/11679571/e04536ea3f09/ijms-25-13548-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a8cf/11679571/ac4c65ad14d7/ijms-25-13548-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a8cf/11679571/f0487f826348/ijms-25-13548-g011a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a8cf/11679571/47e52dc94221/ijms-25-13548-g012a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a8cf/11679571/42a1ae4e5781/ijms-25-13548-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a8cf/11679571/7ceea90a1494/ijms-25-13548-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a8cf/11679571/f51bfe89cc43/ijms-25-13548-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a8cf/11679571/f662b6f52ff3/ijms-25-13548-g016.jpg

相似文献

[1]
Nanosilver-Biopolymer-Silica Composites: Preparation, and Structural and Adsorption Analysis with Evaluation of Antimicrobial Properties.

Int J Mol Sci. 2024-12-18

[2]
Synthesis of biopolymer blends nanocomposites embedded with mono-(Ag, Fe) and bi-(Ag-Fe) metallic nanoparticles using an eco-friendly approach for antimicrobial activities.

Bioprocess Biosyst Eng. 2024-8

[3]
Synthesis of Ag@FeO nanocomposite based on O-carboxymethylchitosan with antimicrobial activity.

Int J Biol Macromol. 2017-9-21

[4]
Silver Nanoparticles on Chitosan/Silica Nanofibers: Characterization and Antibacterial Activity.

Int J Mol Sci. 2019-12-25

[5]
Chitosan-Silica Composites for Adsorption Application in the Treatment of Water and Wastewater from Anionic Dyes.

Int J Mol Sci. 2023-7-23

[6]
Silver Nanoparticles Prepared Using Magnolia officinalis Are an Effective Antimicrobial Agent on Candida albicans, Escherichia coli, and Staphylococcus aureus.

Probiotics Antimicrob Proteins. 2025-4

[7]
Chitosan and silver nanoparticles as pudding with raisins with antimicrobial properties.

J Colloid Interface Sci. 2011-8-17

[8]
Antimicrobial and anticancer activities of porous chitosan-alginate biosynthesized silver nanoparticles.

Int J Biol Macromol. 2017-5

[9]
Antibacterial activity of optically transparent nanocomposite films based on chitosan or its derivatives and silver nanoparticles.

Carbohydr Res. 2011-11-19

[10]
Formulation Optimization of Chitosan-Stabilized Silver Nanoparticles Using In Vitro Antimicrobial Assay.

J Pharm Sci. 2018-9-19

本文引用的文献

[1]
Gelatin-based nanoparticles and antibiotics: a new therapeutic approach for osteomyelitis?

Front Mol Biosci. 2024-7-30

[2]
Synthesis of Composite Sorbents with Chitosan and Varied Silica Phases for the Adsorption of Anionic Dyes.

Molecules. 2024-5-1

[3]
Evaluation of the Dye Extraction Using Designed Hydrogels for Further Applications towards Water Treatment.

Gels. 2024-2-21

[4]
Efficient green silver nanoparticles-antibiotic combinations against antibiotic-resistant bacteria.

AMB Express. 2023-10-17

[5]
Chitosan-Silica Composites for Adsorption Application in the Treatment of Water and Wastewater from Anionic Dyes.

Int J Mol Sci. 2023-7-23

[6]
Synthesis of Chitosan-Silver Nanocomposite and Its Evaluation as an Antibacterial Coating for Mobile Phone Glass Protectors.

ACS Omega. 2023-5-10

[7]
The Structure of Ordered Mesoporous Materials Synthesized from Aluminum Phyllosilicate Clay (Bentonite).

Molecules. 2023-3-11

[8]
Synergistic antimicrobial effect of the combination of beta-lactam antibiotics and chitosan derivative on multidrug-resistant bacteria.

Int J Biol Macromol. 2022-12-31

[9]
Multifunctional Silver Nanoparticles Based on Chitosan: Antibacterial, Antibiofilm, Antifungal, Antioxidant, and Wound-Healing Activities.

J Fungi (Basel). 2022-6-8

[10]
Mesoporous Carbons of Well-Organized Structure in the Removal of Dyes from Aqueous Solutions.

Molecules. 2021-4-9

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索