Suppr超能文献

基于衰老相关基因的肺腺癌预后模型:对肿瘤微环境及治疗意义的见解

Aging-Related Gene-Based Prognostic Model for Lung Adenocarcinoma: Insights into Tumor Microenvironment and Therapeutic Implications.

作者信息

Wang Jin, Zhang Hailong, Feng Yaohui, Gong Xian, Song Xiangrong, Wei Meidan, Hu Yaoyu, Li Jianxiang

机构信息

Department of Toxicology, School of Public Health, Suzhou Medicine College of Soochow University, Suzhou 215123, China.

出版信息

Int J Mol Sci. 2024 Dec 18;25(24):13572. doi: 10.3390/ijms252413572.

Abstract

Lung cancer remains the leading cause of cancer-related mortality globally, with a poor prognosis primarily due to late diagnosis and limited treatment options. This research highlights the critical demand for advanced prognostic tools by creating a model centered on aging-related genes (ARGs) to improve prediction and treatment strategies for lung adenocarcinoma (LUAD). By leveraging datasets from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO), we developed a prognostic model that integrates 14 ARGs using the least absolute shrinkage and selection operator (LASSO) alongside Cox regression analyses. The model exhibited strong predictive performance, achieving area under the curve (AUC) values greater than 0.8 for one-year survival in both internal and external validation cohorts. The risk scores generated by our model were significantly correlated with critical features of the tumor microenvironment, including the presence of cancer-associated fibroblasts (CAFs) and markers of immune evasion, such as T-cell dysfunction and exclusion. Higher risk scores correlated with a more tumor-promoting microenvironment and increased immune suppression, highlighting the model's relevance in understanding LUAD progression. Additionally, XRCC6, a protein involved in DNA repair and cellular senescence, was found to be upregulated in LUAD. Functional assays demonstrated that the knockdown of XRCC6 led to decreased cell proliferation, whereas its overexpression alleviated DNA damage, highlighting its significance in tumor biology and its potential therapeutic applications. This study provides a novel ARG-based prognostic model for LUAD, offering valuable insights into tumor dynamics and the tumor microenvironment, which may guide the development of targeted therapies and improve patient outcomes.

摘要

肺癌仍然是全球癌症相关死亡的主要原因,预后较差,主要是由于诊断较晚和治疗选择有限。本研究通过创建一个以衰老相关基因(ARGs)为中心的模型,强调了对先进预后工具的迫切需求,以改善肺腺癌(LUAD)的预测和治疗策略。通过利用来自癌症基因组图谱(TCGA)和基因表达综合数据库(GEO)的数据集,我们开发了一种预后模型,该模型使用最小绝对收缩和选择算子(LASSO)以及Cox回归分析整合了14个ARGs。该模型表现出强大的预测性能,在内部和外部验证队列中,一年生存率的曲线下面积(AUC)值均大于0.8。我们模型生成的风险评分与肿瘤微环境的关键特征显著相关,包括癌症相关成纤维细胞(CAFs)的存在以及免疫逃逸标志物,如T细胞功能障碍和排除。较高的风险评分与更具肿瘤促进作用的微环境和增加的免疫抑制相关,突出了该模型在理解LUAD进展中的相关性。此外,发现参与DNA修复和细胞衰老的蛋白质XRCC6在LUAD中上调。功能分析表明,敲低XRCC6导致细胞增殖减少,而其过表达减轻了DNA损伤,突出了其在肿瘤生物学中的重要性及其潜在的治疗应用。本研究为LUAD提供了一种基于ARGs的新型预后模型,为肿瘤动态和肿瘤微环境提供了有价值的见解,这可能指导靶向治疗的发展并改善患者预后。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/33a8/11678022/6ab6c84b091c/ijms-25-13572-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验