Suppr超能文献

基于人工智能的新冠病毒感染磷酸化位点识别方法的实证比较与分析

Empirical Comparison and Analysis of Artificial Intelligence-Based Methods for Identifying Phosphorylation Sites of SARS-CoV-2 Infection.

作者信息

Lai Hongyan, Zhu Tao, Xie Sijia, Luo Xinwei, Hong Feitong, Luo Diyu, Dao Fuying, Lin Hao, Shu Kunxian, Lv Hao

机构信息

Chongqing Key Laboratory of Big Data for Bio Intelligence, Chongqing University of Posts and Telecommunications, Chongqing 400065, China.

Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China.

出版信息

Int J Mol Sci. 2024 Dec 21;25(24):13674. doi: 10.3390/ijms252413674.

Abstract

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a member of the large coronavirus family with high infectivity and pathogenicity and is the primary pathogen causing the global pandemic of coronavirus disease 2019 (COVID-19). Phosphorylation is a major type of protein post-translational modification that plays an essential role in the process of SARS-CoV-2-host interactions. The precise identification of phosphorylation sites in host cells infected with SARS-CoV-2 will be of great importance to investigate potential antiviral responses and mechanisms and exploit novel targets for therapeutic development. Numerous computational tools have been developed on the basis of phosphoproteomic data generated by mass spectrometry-based experimental techniques, with which phosphorylation sites can be accurately ascertained across the whole SARS-CoV-2-infected proteomes. In this work, we have comprehensively reviewed several major aspects of the construction strategies and availability of these predictors, including benchmark dataset preparation, feature extraction and refinement methods, machine learning algorithms and deep learning architectures, model evaluation approaches and metrics, and publicly available web servers and packages. We have highlighted and compared the prediction performance of each tool on the independent serine/threonine (S/T) and tyrosine (Y) phosphorylation datasets and discussed the overall limitations of current existing predictors. In summary, this review would provide pertinent insights into the exploitation of new powerful phosphorylation site identification tools, facilitate the localization of more suitable target molecules for experimental verification, and contribute to the development of antiviral therapies.

摘要

严重急性呼吸综合征冠状病毒2(SARS-CoV-2)是大型冠状病毒家族的成员,具有高传染性和致病性,是导致2019冠状病毒病(COVID-19)全球大流行的主要病原体。磷酸化是蛋白质翻译后修饰的主要类型,在SARS-CoV-2与宿主相互作用过程中起重要作用。精确鉴定感染SARS-CoV-2的宿主细胞中的磷酸化位点对于研究潜在的抗病毒反应和机制以及开发新的治疗靶点具有重要意义。基于基于质谱的实验技术产生的磷酸化蛋白质组数据,已经开发了许多计算工具,利用这些工具可以在整个感染SARS-CoV-2的蛋白质组中准确确定磷酸化位点。在这项工作中,我们全面综述了这些预测器的构建策略和可用性的几个主要方面,包括基准数据集的制备、特征提取和优化方法、机器学习算法和深度学习架构、模型评估方法和指标,以及公开可用的网络服务器和软件包。我们突出并比较了每个工具在独立的丝氨酸/苏氨酸(S/T)和酪氨酸(Y)磷酸化数据集上的预测性能,并讨论了当前现有预测器的总体局限性。总之,本综述将为开发新的强大的磷酸化位点识别工具提供相关见解,有助于定位更合适的靶分子进行实验验证,并有助于抗病毒疗法的发展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0269/11678915/cf75af7e4102/ijms-25-13674-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验