Suppr超能文献

Res-GCN:利用图卷积网络和残差网络识别蛋白质磷酸化位点。

Res-GCN: Identification of protein phosphorylation sites using graph convolutional network and residual network.

机构信息

College of Mathematics and Physics, Qingdao University of Science and Technology, Qingdao 266061, China.

College of Mathematics and Physics, Qingdao University of Science and Technology, Qingdao 266061, China; School of Data Science, Qingdao University of Science and Technology, Qingdao 266061, China.

出版信息

Comput Biol Chem. 2024 Oct;112:108183. doi: 10.1016/j.compbiolchem.2024.108183. Epub 2024 Aug 24.

Abstract

An essential post-translational modification, phosphorylation is intimately related with a wide range of biological activities. The advancement of effective computational methods for correctly recognizing phosphorylation sites is important for in-depth understanding of various physiological phenomena. However, the traditional method of identifying phosphorylation sites experimentally is time-consuming and laborious, which makes it difficult to meet the processing demands of today's big data. This research proposes the use of a novel model, Res-GCN, to recognize the phosphorylation sites of SARS-CoV-2. Firstly, eight feature extraction strategies are utilized to digitize the protein sequence from multiple viewpoints, including amino acid property encodings (AAindex), pseudo-amino acid composition (PseAAC), adapted normal distribution bi-profile Bayes (ANBPB), dipeptide composition (DC), binary encoding (BE), enhanced amino acid composition (EAAC), Word2Vec, and BLOSUM62 matrices. Secondly, elastic net is utilized to eliminate redundant data in the fused matrix. Finally, a combination of graph convolutional network (GCN) and residual network (ResNet) is used to classify the phosphorylated sites and output predictions using a fully connected layer (FC). The performance of Res-GCN is tested by 5-fold cross-validation and independent testing, and excellent results are obtained on S/T and Y datasets. This demonstrates that the Res-GCN model exhibits exceptional predictive performance and generalizability.

摘要

磷酸化是一种重要的翻译后修饰,与广泛的生物活性密切相关。开发有效的计算方法来正确识别磷酸化位点对于深入理解各种生理现象非常重要。然而,传统的实验鉴定磷酸化位点的方法既耗时又费力,难以满足当今大数据的处理需求。本研究提出了一种新的模型 Res-GCN,用于识别 SARS-CoV-2 的磷酸化位点。首先,利用八种特征提取策略从多个角度对蛋白质序列进行数字化,包括氨基酸属性编码(AAindex)、伪氨基酸组成(PseAAC)、自适应正态分布双谱贝叶斯(ANBPB)、二肽组成(DC)、二进制编码(BE)、增强氨基酸组成(EAAC)、Word2Vec 和 BLOSUM62 矩阵。其次,弹性网络用于消除融合矩阵中的冗余数据。最后,使用图卷积网络(GCN)和残差网络(ResNet)的组合对磷酸化位点进行分类,并使用全连接层(FC)输出预测。通过 5 折交叉验证和独立测试对 Res-GCN 的性能进行了测试,在 S/T 和 Y 数据集上取得了优异的结果。这表明 Res-GCN 模型具有出色的预测性能和泛化能力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验