Hu Xiaobin, Zhao Mingxing, Zhang Rongfei
School of Life Science, Huzhou University, Huzhou 313000, China.
Materials (Basel). 2024 Dec 23;17(24):6297. doi: 10.3390/ma17246297.
A series of Ag-loaded and oxygen vacancy (OV)-containing BiOBr/BiOI (Ag/BiOBr/BiOI) photocatalysts with varying Ag loading levels were synthesized via the solvothermal-photocatalytic reduction method. As confirmed via optical, photoelectrochemical, and 4-chlorophenol photodegradation experiments, a low Ag loading level significantly enhanced the photogenerated charge carrier (PCC) transfer on the BiOBr/BiOI semiconductor surface and the performance of Ag/BiOBr/BiOI photocatalysts, which was attributable to the synergism between the effect of OVs and the localized surface plasmon resonance (LSPR) of Ag nanoparticles. Additionally, BiOBr/BiOI heterojunctions facilitated efficient visible-light harvesting and PCC separation. As indicated by finite-difference time-domain (FDTD) simulations and density functional theory (DFT) calculations, the electric field intensity in the "hot spots" generated at the interface between the BiOBr/BiOI semiconductor and Ag nanoparticles increased by more than eight times, and the presence of OVs and Ag atomic clusters introduced impurity energy levels in the semiconductor bandgap, improving PCC separation and Ag/BiOBr/BiOI photocatalytic efficiency. However, an increase in silver loading renders the composite metallic, suggesting a reduction in its photocatalytic performance. This work provides new insights for designing highly active visible light catalysts and contributes to the development of more efficient plasmonic catalysts.
通过溶剂热-光催化还原法合成了一系列具有不同银负载量的负载银且含有氧空位(OV)的BiOBr/BiOI(Ag/BiOBr/BiOI)光催化剂。通过光学、光电化学和4-氯苯酚光降解实验证实,低银负载量显著增强了BiOBr/BiOI半导体表面光生电荷载流子(PCC)的转移以及Ag/BiOBr/BiOI光催化剂的性能,这归因于氧空位效应与银纳米颗粒的局域表面等离子体共振(LSPR)之间的协同作用。此外,BiOBr/BiOI异质结促进了有效的可见光捕获和PCC分离。有限时域差分(FDTD)模拟和密度泛函理论(DFT)计算表明,BiOBr/BiOI半导体与银纳米颗粒界面处产生的“热点”中的电场强度增加了八倍以上,并且氧空位和银原子团簇的存在在半导体带隙中引入了杂质能级,提高了PCC分离和Ag/BiOBr/BiOI光催化效率。然而,银负载量的增加使复合材料变为金属性,这表明其光催化性能降低。这项工作为设计高活性可见光催化剂提供了新的见解,并有助于开发更高效的等离子体催化剂。