Montanaro Mattia, Biancolillo Alessandra, D'Archivio Angelo Antonio, Foschi Martina
Department of Physical and Chemical Sciences, University of L'Aquila, Via Vetoio snc, 67100 L'Aquila, Italy.
Molecules. 2024 Dec 12;29(24):5878. doi: 10.3390/molecules29245878.
This study aimed to validate a method for characterizing and quantifying the multi-elemental profiles of different insect flours to enable their distinction, identification, and quality assessment. The focus was on three insect species: cricket ( ), buffalo worm (), and mealworm ( ).
Mealworms were powdered in the laboratory through mechanical processing. Sample analysis involved acid digestion using a microwave digester, followed by profiling with Inductively Coupled Plasma Mass Spectrometry (ICP-MS). This technique enabled rapid, multi-elemental analysis at trace levels. Chemometric methods, including Principal Component Analysis (PCA) for exploratory analysis, Covariance Selection-Linear Discriminant Analysis (CovSel-LDA), alongside forward stepwise LDA classification methods, were applied and compared.
ICP-MS accurately detected elements at micro trace levels. Both classification models, based on different variable selection methods and externally validated on a test set comprising 45% of the available samples, proved effective in classifying samples based on slightly different pools of trace elements. CovSel-LDA selected Mg and Se, whereas the stepwise-LDA focused on Mg, K, and Mn.
the validated methods demonstrated high accuracy and generalizability, supporting their potential use in food industry applications. This model could assist in quality control, facilitating the introduction of insect-based flour into European and international markets as novel foods.
本研究旨在验证一种用于表征和量化不同昆虫粉多元素谱的方法,以实现对它们的区分、鉴定和质量评估。重点关注三种昆虫:蟋蟀( )、黄粉虫( )和黑粉虫( )。
在实验室中通过机械加工将黑粉虫磨成粉末。样品分析包括使用微波消解仪进行酸消解,然后用电感耦合等离子体质谱法(ICP-MS)进行分析。该技术能够在痕量水平上进行快速的多元素分析。应用并比较了化学计量学方法,包括用于探索性分析的主成分分析(PCA)、协方差选择 - 线性判别分析(CovSel-LDA)以及向前逐步LDA分类方法。
ICP-MS能够准确检测微量和痕量水平的元素。基于不同变量选择方法的两种分类模型,在包含45%可用样品的测试集上进行外部验证,结果证明在基于略有不同的微量元素组合对样品进行分类方面是有效的。CovSel-LDA选择了镁和硒,而逐步LDA则侧重于镁、钾和锰。
经过验证的方法具有很高的准确性和通用性,支持它们在食品工业应用中的潜在用途。该模型可以协助质量控制,促进以昆虫为基础的面粉作为新型食品进入欧洲和国际市场。