Ishkitiev Nikolay, Micheva Maria, Miteva Marina, Gaydarova Stefaniya, Tzachev Christo, Lozanova Vesela, Lozanov Valentin, Cheshmedzhieva Diana, Kandinska Meglena, Ilieva Sonia, Gargallo Raimundo, Baluschev Stanislav, Stoynov Stoyno, Dyankova-Danovska Teodora, Nedelcheva-Veleva Marina, Landfester Katharina, Mihaylova Zornitsa, Vasilev Aleksey
Department of Medical Chemistry and Biochemistry, Medical University Sofia, 2 Zdrave Str., 1431 Sofia, Bulgaria.
Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.
Molecules. 2024 Dec 21;29(24):6038. doi: 10.3390/molecules29246038.
The development of fluorescence-based methods for bioassays and medical diagnostics requires the design and synthesis of specific markers to target biological microobjects. However, biomolecular recognition in real cellular systems is not always as selective as desired. A new concept for creating fluorescent biomolecular probes, utilizing a fluorogenic dye and biodegradable, biocompatible nanomaterials, is demonstrated. The synthesis of a new dicationic asymmetric monomethine cyanine dye with benzo[d]thiazolium-N-propionamide and chloroquinoline end groups is presented. The photophysical properties of the newly synthesized dye were examined through the combined application of spectroscopic and theoretical methods. The applicability of the dye as a fluorogenic nucleic acid probe was proven by UV-VIS spectroscopy and fluorescence titration. The dye-nucleic acid interaction mode was investigated by UV-Vis and CD spectroscopy. The newly synthesized dicationic dye, like other similar fluorogenic structures, limited permeability, which restricts its use as a probe for RNA and DNA. To enhance cellular delivery, we utilized a patented technology that employs solid, insoluble lipid nanoparticles. This method ensures the complete introduction of the dye into cells while minimizing activity outside the cells. In our study involving two human cell lines, we observed improved penetration through the cell membrane and distinctive selectivity in visualizing nucleic acids within the cytoplasm and nucleus.
用于生物测定和医学诊断的基于荧光的方法的发展需要设计和合成针对生物微物体的特定标记物。然而,在真实细胞系统中的生物分子识别并不总是如预期那样具有选择性。本文展示了一种利用荧光染料以及可生物降解、生物相容性纳米材料来创建荧光生物分子探针的新概念。介绍了一种具有苯并[d]噻唑鎓 - N - 丙酰胺和氯喹啉端基的新型二价不对称单甲川花菁染料的合成。通过光谱学和理论方法的联合应用研究了新合成染料的光物理性质。通过紫外 - 可见光谱和荧光滴定证明了该染料作为荧光核酸探针的适用性。通过紫外 - 可见光谱和圆二色光谱研究了染料与核酸的相互作用模式。新合成的二价染料与其他类似的荧光结构一样,渗透性有限,这限制了其作为RNA和DNA探针的用途。为了增强细胞递送,我们采用了一种专利技术,该技术使用固体、不溶性脂质纳米颗粒。这种方法可确保染料完全进入细胞,同时将细胞外的活性降至最低。在我们涉及两种人类细胞系的研究中,我们观察到染料对细胞膜的穿透性有所改善,并且在可视化细胞质和细胞核内的核酸方面具有独特的选择性。