Suppr超能文献

通过环氧树脂无CO成核发泡制备轻质多孔电磁吸收材料及其性能调控

Fabrication and Performance Regulation of Lightweight Porous Electromagnetic Absorbing Materials via CO Nucleation-Free Foaming of EP.

作者信息

Dong Tienan, Quan Jingru, Huang Funing, Guan Yitong, Lin Zihong, Wang Zeyao, Liu Yuheng, Hang Zusheng, Zhao Yupei, Huang Yu'an

机构信息

School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.

School of Materials Science and Engineering, Nanjing Institute of Technology, Nanjing 211167, China.

出版信息

Polymers (Basel). 2024 Dec 19;16(24):3549. doi: 10.3390/polym16243549.

Abstract

In this study, CO reacted with a curing agent through nucleophilic addition to form ammonium salts, enabling the stable capture and internal release of CO, which achieved gas-phase nucleation and foaming. Additionally, the introduction of wave-absorbing agents improved the absorption mechanism and promoted uniform foaming. This nucleation-free foaming process relies on the induced growth of gas nuclei and the synergistic effect of the wave-absorbing agents, effectively preventing the uneven foaming issues caused by traditional nucleating agents. Ultimately, a lightweight epoxy foam absorbing material (LFAM) was developed. BET tests showed that 2.0 wt% carbon-based wave-absorbing agents (LFAMs-A2) expanded the material's volume to 4.6 times its original size, forming a uniform porous structure. VNA tests revealed that LFAMs-A2 achieved a minimum reflection loss of -13.25 dB and an absorption bandwidth of 3.7 GHz in the 12-18 GHz range. The material with 2.0 wt% ferrite-based wave-absorbing agents (LFAMs-C2) achieved a minimum reflection loss of -26.83 dB at 16.6 GHz and an absorption bandwidth of 5.3 GHz, nearly covering the Ku band. DSC tests indicated that the material maintained good thermal stability at 150 °C. This study provides a new approach for lightweight coatings and structural optimization, with broad application potential in 5G communications, microwave anechoic chambers, and aerospace fields.

摘要

在本研究中,CO通过亲核加成与固化剂反应形成铵盐,实现了CO的稳定捕获和内部释放,从而实现气相成核和发泡。此外,吸波剂的引入改善了吸收机理并促进了均匀发泡。这种无成核发泡过程依赖于气核的诱导生长和吸波剂的协同作用,有效防止了传统成核剂引起的发泡不均匀问题。最终,开发出了一种轻质环氧泡沫吸收材料(LFAM)。BET测试表明,2.0 wt%的碳基吸波剂(LFAMs-A2)使材料体积膨胀至原来的4.6倍,形成了均匀的多孔结构。VNA测试显示,LFAMs-A2在12-18 GHz范围内实现了-13.25 dB的最小反射损耗和3.7 GHz的吸收带宽。含有2.0 wt%铁氧体基吸波剂的材料(LFAMs-C2)在16.6 GHz时实现了-26.83 dB的最小反射损耗和5.3 GHz的吸收带宽,几乎覆盖了Ku波段。DSC测试表明,该材料在150 °C下保持了良好的热稳定性。本研究为轻质涂层和结构优化提供了一种新方法,在5G通信、微波暗室和航空航天领域具有广阔的应用潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1e6d/11677744/cca2587e7fd6/polymers-16-03549-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验