Suppr超能文献

用于认知无线电应用的基于深度学习的频谱感知

Deep Learning-Based Spectrum Sensing for Cognitive Radio Applications.

作者信息

Abdelbaset Sara E, Kasem Hossam M, Khalaf Ashraf A, Hussein Amr H, Kabeel Ahmed A

机构信息

Electronics and Electrical Communications Engineering Department, Higher Institute of Engineering and Technology, New Damietta 34517, Egypt.

Electronics and Communications Department, Faculty of Engineering, Tanta University, Tanta 31511, Egypt.

出版信息

Sensors (Basel). 2024 Dec 11;24(24):7907. doi: 10.3390/s24247907.

Abstract

In order for cognitive radios to identify and take advantage of unused frequency bands, spectrum sensing is essential. Conventional techniques for spectrum sensing rely on extracting features from received signals at specific locations. However, convolutional neural networks (CNNs) and recurrent neural networks (RNNs) have recently demonstrated promise in improving the precision and efficacy of spectrum sensing. Our research introduces a groundbreaking approach to spectrum sensing by leveraging convolutional neural networks (CNNs) to significantly advance the precision and effectiveness of identifying unused frequency bands. We treat spectrum sensing as a classification task and train our model with diverse signal types and noise data, enabling unparalleled adaptability to novel signals. Our method surpasses traditional techniques such as the maximum-minimum eigenvalue ratio-based and frequency domain entropy-based methods, showcasing superior performance and adaptability. In particular, our CNN-based approach demonstrates exceptional accuracy, even outperforming established methods when faced with additive white Gaussian noise (AWGN).

摘要

为了使认知无线电能够识别并利用未使用的频段,频谱感知至关重要。传统的频谱感知技术依赖于在特定位置从接收到的信号中提取特征。然而,卷积神经网络(CNN)和循环神经网络(RNN)最近在提高频谱感知的精度和效率方面展现出了潜力。我们的研究引入了一种开创性的频谱感知方法,通过利用卷积神经网络(CNN)显著提高识别未使用频段的精度和有效性。我们将频谱感知视为一项分类任务,并用多种信号类型和噪声数据训练我们的模型,从而实现对新信号无与伦比的适应性。我们的方法超越了传统技术,如基于最大最小特征值比和基于频域熵的方法,展现出卓越的性能和适应性。特别是,我们基于CNN的方法表现出了极高的准确性,即使在面对加性高斯白噪声(AWGN)时也优于现有方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ed9/11679419/2e9914a1f4f4/sensors-24-07907-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验