Suppr超能文献

利用野生动物监测中的时间特征改进延时图像目标检测

Improving Object Detection for Time-Lapse Imagery Using Temporal Features in Wildlife Monitoring.

作者信息

Jenkins Marcus, Franklin Kirsty A, Nicoll Malcolm A C, Cole Nik C, Ruhomaun Kevin, Tatayah Vikash, Mackiewicz Michal

机构信息

School of Computing Sciences, University of East Anglia (UEA), Norwich, NR4 7TJ, UK.

School of Biological Sciences, University of East Anglia (UEA), Norwich NR4 7TJ, UK.

出版信息

Sensors (Basel). 2024 Dec 14;24(24):8002. doi: 10.3390/s24248002.

Abstract

Monitoring animal populations is crucial for assessing the health of ecosystems. Traditional methods, which require extensive fieldwork, are increasingly being supplemented by time-lapse camera-trap imagery combined with an automatic analysis of the image data. The latter usually involves some object detector aimed at detecting relevant targets (commonly animals) in each image, followed by some postprocessing to gather activity and population data. In this paper, we show that the performance of an object detector in a single frame of a time-lapse sequence can be improved by including spatio-temporal features from the prior frames. We propose a method that leverages temporal information by integrating two additional spatial feature channels which capture stationary and non-stationary elements of the scene and consequently improve scene understanding and reduce the number of stationary false positives. The proposed technique achieves a significant improvement of 24% in mean average precision (mAP@0.05:0.95) over the baseline (temporal feature-free, single frame) object detector on a large dataset of breeding tropical seabirds. We envisage our method will be widely applicable to other wildlife monitoring applications that use time-lapse imaging.

摘要

监测动物种群对于评估生态系统的健康状况至关重要。传统方法需要大量的野外工作,如今越来越多地通过延时相机陷阱图像与图像数据的自动分析相结合来进行补充。后者通常涉及某种目标检测器,旨在检测每个图像中的相关目标(通常是动物),随后进行一些后处理以收集活动和种群数据。在本文中,我们表明,通过纳入来自先前帧的时空特征,可以提高延时序列单帧中目标检测器的性能。我们提出了一种方法,通过整合两个额外的空间特征通道来利用时间信息,这两个通道捕获场景中的静态和非静态元素,从而改善场景理解并减少静态误报的数量。在所提出的技术在一个大型热带海鸟繁殖数据集上,相对于基线(无时间特征、单帧)目标检测器,平均精度均值(mAP@0.05:0.95)显著提高了24%。我们设想我们的方法将广泛适用于其他使用延时成像的野生动物监测应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c209/11679056/57de26098360/sensors-24-08002-g0A1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验