Suppr超能文献

一种基于模态对齐与融合的全天候遥感目标检测方法。

A Modality Alignment and Fusion-Based Method for Around-the-Clock Remote Sensing Object Detection.

作者信息

Qi Yongjun, Yang Shaohua, Chen Jiahao, Zhang Meng, Zhu Jie, Liu Xin, Zheng Hongxing

机构信息

School of Computer Science and Engineering, North China Institute of Aerospace Engineering, Langfang 065000, China.

Hebei Collaborative Innovation Center of Micro Nano Satellites, North China Institute of Aerospace Engineering, Langfang 065000, China.

出版信息

Sensors (Basel). 2025 Aug 11;25(16):4964. doi: 10.3390/s25164964.

Abstract

Cross-modal remote sensing object detection holds significant potential for around-the-clock applications. However, the modality differences between cross-modal data and the degradation of feature quality under adverse weather conditions limit detection performance. To address these challenges, this paper presents a novel cross-modal remote sensing object detection framework designed to overcome two critical challenges in around-the-clock applications: (1) significant modality disparities between visible light, infrared, and synthetic aperture radar data, and (2) severe feature degradation under adverse weather conditions including fog, and nighttime scenarios. Our primary contributions are as follows: First, we develop a multi-scale feature extraction module that employs a hierarchical convolutional architecture to capture both fine-grained details and contextual information, effectively compensating for missing or blurred features in degraded visible-light images. Second, we introduce an innovative feature interaction module that utilizes cross-attention mechanisms to establish long-range dependencies across modalities while dynamically suppressing noise interference through adaptive feature selection. Third, we propose a feature correction fusion module that performs spatial alignment of object boundaries and channel-wise optimization of global feature consistency, enabling robust fusion of complementary information from different modalities. The proposed framework is validated on visible light, infrared, and SAR modalities. Extensive experiments on three challenging datasets (LLVIP, OGSOD, and Drone Vehicle) demonstrate our framework's superior performance, achieving state-of-the-art mean average precision scores of 66.3%, 58.6%, and 71.7%, respectively, representing significant improvements over existing methods in scenarios with modality differences or extreme weather conditions. The proposed solution not only advances the technical frontier of cross-modal object detection but also provides practical value for mission-critical applications such as 24/7 surveillance systems, military reconnaissance, and emergency response operations where reliable around-the-clock detection is essential.

摘要

跨模态遥感目标检测在全天候应用中具有巨大潜力。然而,跨模态数据之间的模态差异以及恶劣天气条件下特征质量的退化限制了检测性能。为应对这些挑战,本文提出了一种新颖的跨模态遥感目标检测框架,旨在克服全天候应用中的两个关键挑战:(1)可见光、红外和合成孔径雷达数据之间存在显著的模态差异,以及(2)在包括雾和夜间场景在内的恶劣天气条件下特征严重退化。我们的主要贡献如下:首先,我们开发了一个多尺度特征提取模块,该模块采用分层卷积架构来捕获细粒度细节和上下文信息,有效地补偿退化可见光图像中缺失或模糊的特征。其次,我们引入了一个创新的特征交互模块,该模块利用交叉注意力机制跨模态建立长程依赖关系,同时通过自适应特征选择动态抑制噪声干扰。第三,我们提出了一个特征校正融合模块,该模块对目标边界进行空间对齐,并对全局特征一致性进行通道级优化,从而实现不同模态互补信息的稳健融合。所提出的框架在可见光、红外和合成孔径雷达模态上得到了验证。在三个具有挑战性的数据集(LLVIP、OGSOD和无人机车辆)上进行的广泛实验证明了我们框架的卓越性能,分别实现了66.3%、58.6%和71.7%的当前最优平均精度得分,在存在模态差异或极端天气条件的场景中相对于现有方法有显著改进。所提出的解决方案不仅推进了跨模态目标检测的技术前沿,还为诸如全天候监控系统、军事侦察和应急响应行动等关键任务应用提供了实用价值,在这些应用中可靠的全天候检测至关重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/beff/12390532/b065bb577143/sensors-25-04964-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验