Suppr超能文献

基于知识图谱的传感器网络高级故障诊断上下文学习

Knowledge Graph-Based In-Context Learning for Advanced Fault Diagnosis in Sensor Networks.

作者信息

Xie Xin, Wang Junbo, Han Yu, Li Wenjuan

机构信息

School of Intelligent Systems Engineering, Sun Yat-sen University, Shenzhen 518107, China.

Department of Mathematics and Information Technology, The Education University of Hong Kong, Hong Kong SAR, China.

出版信息

Sensors (Basel). 2024 Dec 18;24(24):8086. doi: 10.3390/s24248086.

Abstract

This paper introduces a novel approach for enhancing fault diagnosis in industrial equipment systems through the application of sensor network-driven knowledge graph-based in-context learning (KG-ICL). By focusing on the critical role of sensor data in detecting and isolating faults, we construct a domain-specific knowledge graph (DSKG) that encapsulates expert knowledge relevant to industrial equipment. Utilizing a long-length entity similarity (LES) measure, we retrieve relevant information from the DSKG. Our method leverages large language models (LLMs) to conduct causal analysis on textual data related to equipment faults derived from sensor networks, thereby significantly enhancing the accuracy and efficiency of fault diagnosis. This paper details a series of experiments that validate the effectiveness of the KG-ICL method in accurately diagnosing fault causes and locations of industrial equipment systems. By leveraging LLMs and structured knowledge, our approach offers a robust tool for condition monitoring and fault management, thereby improving the reliability and efficiency of operations in industrial sectors.

摘要

本文介绍了一种通过应用传感器网络驱动的基于知识图谱的上下文学习(KG-ICL)来增强工业设备系统故障诊断的新方法。通过关注传感器数据在检测和隔离故障中的关键作用,我们构建了一个特定领域的知识图谱(DSKG),它封装了与工业设备相关的专家知识。利用长距离实体相似度(LES)度量,我们从DSKG中检索相关信息。我们的方法利用大语言模型(LLM)对来自传感器网络的与设备故障相关的文本数据进行因果分析,从而显著提高故障诊断的准确性和效率。本文详细介绍了一系列实验,验证了KG-ICL方法在准确诊断工业设备系统故障原因和位置方面的有效性。通过利用LLM和结构化知识,我们的方法为状态监测和故障管理提供了一个强大的工具,从而提高了工业部门运营的可靠性和效率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ebe/11678949/c71078b97b24/sensors-24-08086-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验