Suppr超能文献

评估 ChatGPT 大型语言模型在药代动力学数据分析中的提示工程策略。

Evaluation of prompt engineering strategies for pharmacokinetic data analysis with the ChatGPT large language model.

机构信息

Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, 355 Pharmacy, Buffalo, NY, 14214-8033, USA.

出版信息

J Pharmacokinet Pharmacodyn. 2024 Apr;51(2):101-108. doi: 10.1007/s10928-023-09892-6. Epub 2023 Nov 11.

Abstract

To systematically assess the ChatGPT large language model on diverse tasks relevant to pharmacokinetic data analysis. ChatGPT was evaluated with prototypical tasks related to report writing, code generation, non-compartmental analysis, and pharmacokinetic word problems. The writing task consisted of writing an introduction for this paper from a draft title. The coding tasks consisted of generating R code for semi-logarithmic graphing of concentration-time profiles and calculating area under the curve and area under the moment curve from time zero to infinity. Pharmacokinetics word problems on single intravenous, extravascular bolus, and multiple dosing were taken from a pharmacokinetics textbook. Chain-of-thought and problem separation were assessed as prompt engineering strategies when errors occurred. ChatGPT showed satisfactory performance on the report writing, code generation tasks and provided accurate information on the principles and methods underlying pharmacokinetic data analysis. However, ChatGPT had high error rates in numerical calculations involving exponential functions. The outputs generated by ChatGPT were not reproducible: the precise content of the output was variable albeit not necessarily erroneous for different instances of the same prompt. Incorporation of prompt engineering strategies reduced but did not eliminate errors in numerical calculations. ChatGPT has the potential to become a powerful productivity tool for writing, knowledge encapsulation, and coding tasks in pharmacokinetic data analysis. The poor accuracy of ChatGPT in numerical calculations require resolution before it can be reliably used for PK and pharmacometrics data analysis.

摘要

系统评估 ChatGPT 大型语言模型在与药代动力学数据分析相关的各种任务上的表现。评估 ChatGPT 的原型任务包括报告撰写、代码生成、非房室分析和药代动力学问题。写作任务包括根据草稿标题为本文撰写引言。编码任务包括生成半对数图绘制浓度-时间曲线的 R 代码以及从零到无穷大计算曲线下面积和矩下面积。药代动力学问题取自一本药代动力学教材,涉及单静脉内、血管外推注和多次给药。当出现错误时,评估思维链和问题分离作为提示工程策略。ChatGPT 在报告撰写、代码生成任务中表现令人满意,提供了关于药代动力学数据分析原理和方法的准确信息。然而,ChatGPT 在涉及指数函数的数值计算中错误率较高。ChatGPT 生成的输出不可重现:对于同一提示的不同实例,输出的确切内容是可变的,尽管不一定是错误的。采用提示工程策略可以减少但不能消除数值计算中的错误。ChatGPT 有可能成为药代动力学数据分析中写作、知识封装和编码任务的强大生产力工具。在可以可靠地用于 PK 和临床药代动力学数据分析之前,需要解决 ChatGPT 在数值计算中准确性差的问题。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验