Suppr超能文献

用于涡轮转子-轴承系统不平衡故障预测监测的贝叶斯架构

Bayesian Architecture for Predictive Monitoring of Unbalance Faults in a Turbine Rotor-Bearing System.

作者信息

Bera Banalata, Huang Shyh-Chin, Lin Po Ting, Chiu Yu-Jen, Liang Jin-Wei

机构信息

Department of Mechanical Engineering, National Taiwan University of Science and Technology, Taipei City 10607, Taiwan.

Department of Mechanical Engineering, Ming Chi University of Technology, New Taipei City 24301, Taiwan.

出版信息

Sensors (Basel). 2024 Dec 19;24(24):8123. doi: 10.3390/s24248123.

Abstract

Unbalance faults are among the common causes of interruptions and unexpected failures in rotary systems. Therefore, monitoring unbalance faults is essential for predictive maintenance. While conventional time-invariant mathematical models can assess the impact of these faults, they often rely on proper assumptions of system factors like bearing stiffness and damping characteristics. In reality, continuous high-speed operation and environmental factors like load variations cause these parameters to change. This work presents a novel architecture for unbalance fault monitoring and prognosis, in which the bearing parameters are treated as variables that change with operating conditions. This enables the development of a more reliable mathematical model for continuous monitoring and prognosis of unbalance faults in rotor systems. This Bayesian inference framework uses Markov Chain Monte Carlo (MCMC) sampling to identify dynamic bearing parameters. Specifically, the Metropolis algorithm is employed to systematically evaluate the range of acceptable parameter values within the framework. A novel dual-MCMC loops explore and assess the parameter space, resulting in more accurate and reliable bearing parameter estimations. These updated parameters improve the demonstrated turbine rotor-bearing system's unbalance assessment up to 74.48% of the residual error compared to models with fixed parameters. This validates the Bayesian framework for predictive monitoring and maintenance-oriented solutions.

摘要

不平衡故障是旋转系统中断和意外故障的常见原因之一。因此,监测不平衡故障对于预测性维护至关重要。虽然传统的时不变数学模型可以评估这些故障的影响,但它们通常依赖于对系统因素(如轴承刚度和阻尼特性)的适当假设。实际上,持续的高速运行和诸如负载变化等环境因素会导致这些参数发生变化。这项工作提出了一种用于不平衡故障监测和预测的新颖架构,其中轴承参数被视为随运行条件变化的变量。这使得能够开发出一种更可靠的数学模型,用于转子系统中不平衡故障的连续监测和预测。这个贝叶斯推理框架使用马尔可夫链蒙特卡罗(MCMC)采样来识别动态轴承参数。具体来说,采用 metropolis 算法在框架内系统地评估可接受参数值的范围。一种新颖的双 MCMC 循环探索和评估参数空间,从而得到更准确可靠的轴承参数估计。与具有固定参数的模型相比,这些更新后的参数将所展示的涡轮转子 - 轴承系统的不平衡评估的残余误差降低了高达 74.48%。这验证了用于预测性监测和面向维护的解决方案的贝叶斯框架。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4dd9/11679446/5b3cd025a0ea/sensors-24-08123-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验