Suppr超能文献

基于深度学习的具有动态特性分析的混合电磁轴承和弹性箔气体轴承转子系统性能。

Performance for rotor system of hybrid electromagnetic bearing and elastic foil gas bearing with dynamic characteristics analysis under deep learning.

机构信息

School of Mechanical Engineering, Xi'an Jiao Tong University, Xi'an City, China.

出版信息

PLoS One. 2021 Mar 15;16(3):e0244403. doi: 10.1371/journal.pone.0244403. eCollection 2021.

Abstract

The bearing-rotor system is prone to faults during operation, so it is necessary to analyze the dynamic characteristics of the bearing-rotor system to discuss the optimal structure of the convolutional neural network (CNN) in system fault detection and classification. The turbo expander is undertaken as the research object. Firstly, the hybrid magnetic bearing-rotor system is modeled into the form of four stiffness coefficients and four damping coefficients, so as to analyze and explain the dynamic characteristics of the system. Secondly, the ambient pressure is introduced to analyze the dynamic characteristics of the elastic foil gas bearing-rotor system based on the changes in the dynamic stiffness and dynamic damping of the gas bearing. Finally, the CNN is introduced to be applied in the detection of faults of bearing-rotor system through determining the parameters of the constructed CNN. The results show that the displacement of the rotor increases and the stiffness decreases with the acceleration of the speed of the electromagnetic bearing. The maximum displacement of the rotor can reach 135μm, and the maximum stiffness can be reduced to 35×105N/m. Increase of ambient pressure causes enhancement of main stiffness of the gas bearing, and the main damping decreases accordingly. Analysis of the classification accuracy and loss function based on the CNN model shows that the convolution kernel size of 7*1 and the batch size of 128 can realize the best performance of CNN in fault classification. This provides a data support and reference for studying the dynamic characteristics of the bearing-rotor system and for the optimization of CNN structure in fault classification and detection.

摘要

在运行过程中,轴承-转子系统容易出现故障,因此有必要分析轴承-转子系统的动态特性,以探讨卷积神经网络(CNN)在系统故障检测和分类中的最佳结构。以透平膨胀机为研究对象。首先,将混合磁轴承-转子系统建模为四个刚度系数和四个阻尼系数的形式,以便分析和解释系统的动态特性。其次,引入环境压力,根据气体轴承的动刚度和动阻尼的变化,分析弹性箔片气体轴承-转子系统的动态特性。最后,通过确定所构建的 CNN 的参数,将 CNN 引入到轴承-转子系统的故障检测中。结果表明,随着电磁轴承速度的加速,转子的位移增加,刚度降低。转子的最大位移可达 135μm,最大刚度可降低到 35×105N/m。环境压力的增加导致气体轴承的主刚度增强,主阻尼相应减小。基于 CNN 模型的分类精度和损失函数分析表明,卷积核大小为 7*1,批量大小为 128 可以实现 CNN 在故障分类中的最佳性能。这为研究轴承-转子系统的动态特性以及优化故障分类和检测中的 CNN 结构提供了数据支持和参考。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/298e/7959353/64e66471776d/pone.0244403.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验