Kwak Sunwoo, Akbari Hamed, Garcia Jose A, Mohan Suyash, Dicker Yehuda, Sako Chiharu, Matsumoto Yuji, Nasrallah MacLean P, Shalaby Mahmoud, O'Rourke Donald M, Shinohara Russel T, Liu Fang, Badve Chaitra, Barnholtz-Sloan Jill S, Sloan Andrew E, Lee Matthew, Jain Rajan, Cepeda Santiago, Chakravarti Arnab, Palmer Joshua D, Dicker Adam P, Shukla Gaurav, Flanders Adam E, Shi Wenyin, Woodworth Graeme F, Davatzikos Christos
University of Pennsylvania, Perelman School of Medicine, Department of Radiology, Philadelphia, Pennsylvania, United States.
University of Pennsylvania, Perelman School of Medicine, Center for Biomedical Image Computing and Analytics, Philadelphia, Pennsylvania, United States.
J Med Imaging (Bellingham). 2024 Sep;11(5):054001. doi: 10.1117/1.JMI.11.5.054001. Epub 2024 Aug 30.
Glioblastoma (GBM) is the most common and aggressive primary adult brain tumor. The standard treatment approach is surgical resection to target the enhancing tumor mass, followed by adjuvant chemoradiotherapy. However, malignant cells often extend beyond the enhancing tumor boundaries and infiltrate the peritumoral edema. Traditional supervised machine learning techniques hold potential in predicting tumor infiltration extent but are hindered by the extensive resources needed to generate expertly delineated regions of interest (ROIs) for training models on tissue most and least likely to be infiltrated.
We developed a method combining expert knowledge and training-based data augmentation to automatically generate numerous training examples, enhancing the accuracy of our model for predicting tumor infiltration through predictive maps. Such maps can be used for targeted supra-total surgical resection and other therapies that might benefit from intensive yet well-targeted treatment of infiltrated tissue. We apply our method to preoperative multi-parametric magnetic resonance imaging (mpMRI) scans from a subset of 229 patients of a multi-institutional consortium (Radiomics Signatures for Precision Diagnostics) and test the model on subsequent scans with pathology-proven recurrence.
Leave-one-site-out cross-validation was used to train and evaluate the tumor infiltration prediction model using initial pre-surgical scans, comparing the generated prediction maps with follow-up mpMRI scans confirming recurrence through post-resection tissue analysis. Performance was measured by voxel-wised odds ratios (ORs) across six institutions: University of Pennsylvania (OR: 9.97), Ohio State University (OR: 14.03), Case Western Reserve University (OR: 8.13), New York University (OR: 16.43), Thomas Jefferson University (OR: 8.22), and Rio Hortega (OR: 19.48).
The proposed model demonstrates that mpMRI analysis using deep learning can predict infiltration in the peri-tumoral brain region for GBM patients without needing to train a model using expert ROI drawings. Results for each institution demonstrate the model's generalizability and reproducibility.
胶质母细胞瘤(GBM)是成人最常见且侵袭性最强的原发性脑肿瘤。标准治疗方法是手术切除以靶向强化肿瘤灶,随后进行辅助放化疗。然而,恶性细胞常常超出强化肿瘤边界并浸润瘤周水肿区域。传统的监督式机器学习技术在预测肿瘤浸润范围方面具有潜力,但由于需要大量资源来生成用于在最可能和最不可能被浸润的组织上训练模型的专家划定的感兴趣区域(ROI)而受到阻碍。
我们开发了一种结合专家知识和基于训练的数据增强的方法,以自动生成大量训练示例,通过预测图提高我们预测肿瘤浸润模型的准确性。此类图可用于靶向超全切除手术以及其他可能受益于对浸润组织进行强化但靶向良好的治疗的疗法。我们将我们的方法应用于来自多机构联盟(精准诊断的放射组学特征)的229名患者子集中的术前多参数磁共振成像(mpMRI)扫描,并在后续经病理证实复发的扫描上测试该模型。
采用留一中心交叉验证法,使用术前初始扫描来训练和评估肿瘤浸润预测模型,将生成的预测图与通过切除后组织分析确认复发的后续mpMRI扫描进行比较。通过六个机构的体素优势比(OR)来衡量性能:宾夕法尼亚大学(OR:9.97)、俄亥俄州立大学(OR:14.03)、凯斯西储大学(OR:8.13)、纽约大学(OR:16.43)、托马斯·杰斐逊大学(OR:8.22)和里奥·奥尔特加(OR:19.48)。
所提出的模型表明,使用深度学习的mpMRI分析可以预测GBM患者瘤周脑区的浸润情况,而无需使用专家ROI绘图来训练模型。每个机构的结果都证明了该模型的通用性和可重复性。