IEEE Trans Neural Syst Rehabil Eng. 2024;32:2038-2048. doi: 10.1109/TNSRE.2024.3403198. Epub 2024 May 31.
Electroencephalogram (EEG) is widely used in basic and clinical neuroscience to explore neural states in various populations, and classifying these EEG recordings is a fundamental challenge. While machine learning shows promising results in classifying long multivariate time series, optimal prediction models and feature extraction methods for EEG classification remain elusive. Our study addressed the problem of EEG classification under the framework of brain age prediction, applying a deep learning model on EEG time series. We hypothesized that decomposing EEG signals into oscillatory modes would yield more accurate age predictions than using raw or canonically frequency-filtered EEG. Specifically, we employed multivariate intrinsic mode functions (MIMFs), an empirical mode decomposition (EMD) variant based on multivariate iterative filtering (MIF), with a convolutional neural network (CNN) model. Testing a large dataset of routine clinical EEG scans (n = 6540) from patients aged 1 to 103 years, we found that an ad-hoc CNN model without fine-tuning could reasonably predict brain age from EEGs. Crucially, MIMF decomposition significantly improved performance compared to canonical brain rhythms (from delta to lower gamma oscillations). Our approach achieved a mean absolute error (MAE) of 13.76 ± 0.33 and a correlation coefficient of 0.64 ± 0.01 in brain age prediction over the entire lifespan. Our findings indicate that CNN models applied to EEGs, preserving their original temporal structure, remains a promising framework for EEG classification, wherein the adaptive signal decompositions such as the MIF can enhance CNN models' performance in this task.
脑电图(EEG)在基础和临床神经科学中被广泛用于探索各种人群的神经状态,对这些脑电图记录进行分类是一个基本的挑战。虽然机器学习在对长多元时间序列进行分类方面显示出有前景的结果,但对于脑电图分类的最佳预测模型和特征提取方法仍难以捉摸。我们的研究在脑龄预测框架内解决了脑电图分类问题,在脑电图时间序列上应用了深度学习模型。我们假设将脑电图信号分解为振荡模式将比使用原始或经典频率滤波的脑电图产生更准确的年龄预测。具体来说,我们采用了多变量固有模式函数(MIMF),这是一种基于多变量迭代滤波(MIF)的经验模式分解(EMD)变体,结合卷积神经网络(CNN)模型。我们在一个由 1 至 103 岁患者的常规临床脑电图扫描(n=6540)的大型数据集上进行测试,发现未经微调的特定 CNN 模型可以合理地从 EEG 预测脑龄。至关重要的是,与经典脑节律(从 delta 到较低的伽马振荡)相比,MIMF 分解显著提高了性能。我们的方法在整个生命周期中在脑龄预测方面实现了 13.76±0.33 的平均绝对误差(MAE)和 0.64±0.01 的相关系数。我们的研究结果表明,应用于 EEG 并保留其原始时间结构的 CNN 模型仍然是 EEG 分类的一个很有前途的框架,其中自适应信号分解(如 MIF)可以增强 CNN 模型在该任务中的性能。