Srinivasan Sridevi, Johnson Shiny Duela
Department of Computer Science and Engineering, SRM Institute of Science and Technology, Ramapuram, Chennai, India.
Cogn Neurodyn. 2024 Apr;18(2):431-446. doi: 10.1007/s11571-023-10011-x. Epub 2024 Jan 8.
Schizophrenia (SZ) is a mental disorder that causes lifelong disorders based on delusions, cognitive deficits, and hallucinations. By visual assessment, SZ diagnosis is time-consuming and complicated, because brain states are more effectively revealed by electroencephalogram (EEG) signals, which are effectively used in SZ diagnosis. The application of existing deep learning methods in SZ detection is effective in the classification of 2-dimensional images, and these methods require more computational resources. Therefore, dimensionality reduction is necessary for SZ diagnosis using EEG signals. To reduce the dimensionality of the data, an improved CAO (ICAO) dimensionality reduction method is proposed, which integrates horizontal and vertical crossover approaches with AOA. The optimal feature subset is achieved by satisfying the ICAO conditions, and a fitness function is evaluated based on rough sets for improved accuracy in feature selection. Therefore a Crossover-boosted Archimedes optimization algorithm (AOA) with rough sets for Schizophrenia detection (CAORS-SD) was proposed using multichannel EEG signals from both SZ and normal patients. The signals are decomposed using multivariate empirical mode decomposition into multivariate intrinsic mode functions (MIMFs). Entropy metrics such as spectral entropy, permutation entropy, approximate entropy, sample entropy, and SVD entropy are evaluated on the MIMF domain to detect SZ. The processing time of the kernel support vector machine classifier is minimized with fewer features, reducing the risk Fof overfitting. Accuracy, sensitivity, specificity, precision, and F1-score of the CAORS-SD model should be conducted to diagnose SZ. Therefore, the proposed CAORS-SD method achieves the higher performance of accuracy, sensitivity, specificity, precision, and F1-score values of 96.34, 98.95, 96.86, 98.52, and 96.74% respectively. Also, the CAORS-SD method minimizes the error rate and significantly reduces the execution time.
精神分裂症(SZ)是一种基于妄想、认知缺陷和幻觉导致终身障碍的精神疾病。通过视觉评估,SZ诊断既耗时又复杂,因为脑电图(EEG)信号能更有效地揭示大脑状态,EEG信号在SZ诊断中得到了有效应用。现有深度学习方法在SZ检测中的应用对二维图像分类有效,但这些方法需要更多计算资源。因此,使用EEG信号进行SZ诊断时降维是必要的。为降低数据维度,提出了一种改进的曹(ICAO)降维方法,该方法将水平和垂直交叉方法与AOA相结合。通过满足ICAO条件获得最优特征子集,并基于粗糙集评估适应度函数以提高特征选择的准确性。因此,利用SZ患者和正常患者的多通道EEG信号,提出了一种用于精神分裂症检测的带有粗糙集的交叉增强阿基米德优化算法(AOA)(CAORS-SD)。使用多变量经验模式分解将信号分解为多变量本征模函数(MIMF)。在MIMF域上评估诸如谱熵、排列熵、近似熵、样本熵和奇异值分解熵等熵指标以检测SZ。内核支持向量机分类器的处理时间通过更少的特征得以最小化,降低了过拟合风险。应进行CAORS-SD模型的准确性、敏感性、特异性、精确性和F1分数以诊断SZ。因此,所提出的CAORS-SD方法分别实现了96.34%、98.95%、96.86%、98.52%和96.74%的更高的准确性、敏感性、特异性、精确性和F1分数性能。此外,CAORS-SD方法将错误率最小化并显著减少了执行时间。