Suppr超能文献

一种基于概率解耦知识蒸馏和元学习的轻量级小样本轴承故障诊断算法

A Lightweight and Small Sample Bearing Fault Diagnosis Algorithm Based on Probabilistic Decoupling Knowledge Distillation and Meta-Learning.

作者信息

Luo Hao, Ren Tongli, Zhang Ying, Zhang Li

机构信息

College of Information, Liaoning University, Shenyang 110036, China.

出版信息

Sensors (Basel). 2024 Dec 20;24(24):8157. doi: 10.3390/s24248157.

Abstract

Rolling bearings play a crucial role in industrial equipment, and their failure is highly likely to cause a series of serious consequences. Traditional deep learning-based bearing fault diagnosis algorithms rely on large amounts of training data; training and inference processes consume significant computational resources. Thus, developing a lightweight and suitable fault diagnosis algorithm for small samples is particularly crucial. In this paper, we propose a bearing fault diagnosis algorithm based on probabilistic decoupling knowledge distillation and meta-learning (MIX-MPDKD). This algorithm is lightweight and deployable, performing well in small sample scenarios and effectively solving the deployment problem of large networks in resource-constrained environments. Firstly, our model utilizes the Model-Agnostic Meta-Learning algorithm to initialize the parameters of the teacher model and conduct efficient training. Subsequently, by employing the proposed probability-based decoupled knowledge distillation approach, the outstanding performance of the teacher model was imparted to the student model, enabling the student model to converge rapidly in the context of a small sample size. Finally, the Paderborn University dataset was used for meta-training, while the bearing dataset from Case Western Reserve University, along with our laboratory dataset, was used to validate the results. The experimental results demonstrate that the algorithm achieved satisfactory accuracy performance.

摘要

滚动轴承在工业设备中起着至关重要的作用,其故障很可能会导致一系列严重后果。传统的基于深度学习的轴承故障诊断算法依赖大量训练数据;训练和推理过程消耗大量计算资源。因此,开发一种轻量级且适用于小样本的故障诊断算法尤为关键。在本文中,我们提出了一种基于概率解耦知识蒸馏和元学习的轴承故障诊断算法(MIX-MPDKD)。该算法轻量级且可部署,在小样本场景中表现良好,有效解决了资源受限环境下大型网络的部署问题。首先,我们的模型利用模型无关元学习算法初始化教师模型的参数并进行高效训练。随后,通过采用所提出的基于概率的解耦知识蒸馏方法,将教师模型的出色性能赋予学生模型,使学生模型在小样本规模的情况下能够快速收敛。最后,使用帕德博恩大学数据集进行元训练,而使用凯斯西储大学的轴承数据集以及我们实验室的数据集来验证结果。实验结果表明,该算法取得了令人满意的准确率性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3bd4/11679032/5e809556c29b/sensors-24-08157-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验