Zhang Li, Gu Shixing, Luo Hao, Ding Linlin, Guo Yang
College of Information, Liaoning University, Shenyang 110036, China.
Sensors (Basel). 2024 Jan 30;24(3):890. doi: 10.3390/s24030890.
In response to the challenge of small and imbalanced Datasets, where the total Sample size is limited and healthy Samples significantly outweigh faulty ones, we propose a diagnostic framework designed to tackle Class imbalance, denoted as the Dual-Stream Adaptive Deep Residual Shrinkage Vision Transformer with Interclass-Intraclass Rebalancing Loss (DSADRSViT-IIRL). Firstly, to address the issue of limited Sample quantity, we incorporated the Dual-Stream Adaptive Deep Residual Shrinkage Block (DSA-DRSB) into the Vision Transformer (ViT) architecture, creating a DSA-DRSB that adaptively removes redundant signal information based on the input data characteristics. This enhancement enables the model to focus on the Global receptive field while capturing crucial local fault discrimination features from the extremely limited Samples. Furthermore, to tackle the problem of a significant Class imbalance in long-tailed Datasets, we designed an Interclass-Intraclass Rebalancing Loss (IIRL), which decouples the contributions of the Intraclass and Interclass Samples during training, thus promoting the stable convergence of the model. Finally, we conducted experiments on the Laboratory and CWRU bearing Datasets, validating the superiority of the DSADRSViT-IIRL algorithm in handling Class imbalance within mixed-load Datasets.
针对小样本且不均衡数据集的挑战,即总样本量有限且健康样本显著多于故障样本的情况,我们提出了一种旨在解决类别不均衡问题的诊断框架,称为具有类间-类内重平衡损失的双流自适应深度残差收缩视觉Transformer(DSADRSViT-IIRL)。首先,为了解决样本数量有限的问题,我们将双流自适应深度残差收缩模块(DSA-DRSB)融入视觉Transformer(ViT)架构,创建了一个基于输入数据特征自适应去除冗余信号信息的DSA-DRSB。这种增强使模型能够在关注全局感受野的同时,从极其有限的样本中捕捉关键的局部故障判别特征。此外,为了解决长尾数据集中显著的类别不均衡问题,我们设计了一种类间-类内重平衡损失(IIRL),它在训练过程中解耦类内和类间样本的贡献,从而促进模型的稳定收敛。最后,我们在实验室和CWRU轴承数据集上进行了实验,验证了DSADRSViT-IIRL算法在处理混合负载数据集中类别不均衡问题方面的优越性。