Suppr超能文献

基于蒸馏学习的航空发动机滚动轴承故障异常检测方法

Fault anomaly detection method of aero-engine rolling bearing based on distillation learning.

作者信息

Kang Yuxiang, Chen Guo, Wang Hao, Sheng Jiajiu, Wei Xunkai

机构信息

College of Civil Aviation, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China.

College of General Aviation and Flight, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China.

出版信息

ISA Trans. 2024 Feb;145:387-398. doi: 10.1016/j.isatra.2023.11.034. Epub 2023 Nov 25.

Abstract

In this study, we address the issue of limited generalization capabilities in intelligent diagnosis models caused by the lack of high-quality fault data samples for aero-engine rolling bearings. We provide a fault anomaly detection technique based on distillation learning to address this issue. Two Vision Transformer (ViT) models are specifically used in the distillation learning process, one of which serves as the teacher network and the other as the student network. By using a small-scale student network model, the computational efficiency of the model is increased without sacrificing model accuracy. For feature-centered representation, new loss and anomaly score functions are created, and an enhanced Transformer encoder with the residual block is proposed. Then, a rolling bearing dynamics simulation method is used to obtain rich fault sample data, and the pre-training of the teacher network is completed. For anomaly detection, the training of the student network is completed based on the proposed loss function and the pre-trained teacher network, using only the vibration acceleration samples obtained from the normal state. Finally, the trained completed network and the designed anomaly score function are used to achieve the anomaly detection of rolling bearing faults. The experimental validation was carried out on two sets of test data and one set of real vibration data of a whole aero-engine, and the detection accuracy reached 100 %. The results show that the proposed method has a high capability of rolling bearing fault anomaly detection.

摘要

在本研究中,我们解决了航空发动机滚动轴承缺乏高质量故障数据样本导致智能诊断模型泛化能力有限的问题。我们提供了一种基于蒸馏学习的故障异常检测技术来解决此问题。在蒸馏学习过程中专门使用了两个视觉Transformer(ViT)模型,其中一个作为教师网络,另一个作为学生网络。通过使用小规模的学生网络模型,在不牺牲模型准确性的情况下提高了模型的计算效率。对于以特征为中心的表示,创建了新的损失和异常评分函数,并提出了一种带有残差块的增强型Transformer编码器。然后,使用滚动轴承动力学仿真方法获取丰富的故障样本数据,并完成教师网络的预训练。对于异常检测,仅使用从正常状态获得的振动加速度样本,基于所提出的损失函数和预训练的教师网络完成学生网络的训练。最后,使用训练完成的网络和设计的异常评分函数实现滚动轴承故障的异常检测。在两组测试数据和一组完整航空发动机的真实振动数据上进行了实验验证,检测准确率达到了100%。结果表明,所提出的方法具有很高的滚动轴承故障异常检测能力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验